tinh gia tri cua bieu thuc sau duov dung may tinh
1.2.3.4 + 2.3.4.5 +.....+ 97.98.99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{31}{20}\)đáp số đúng 1000000000000000000000000000000000000000000000000000% đó nha
h and kb nhé
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)
=\(\frac{1}{18}-\frac{1}{5821200}\)
b. Neu A =126.5 thì 126.5=2.45 x (a+64.36) -45
= 2.45 x (a+64.36) 126.5 + 45
= 2.45 x (a+64.36) = 171.5
= a+64.36 = 171.5 : 24.5
a+64.36 = 70
a = 70 - 64.36
a = 5.64
a,thay a=35,64vào bthuc đã cho ta đc:
A= 2,45x(35,64 +64,36)-45=2,45x100-45=200
b,để A=126,5 thì 2,45x(a+64,36)-45=126,5
=>2,45a+157,682-45=126,5
=>2,45a=13,818
=>a=5,64
Đặt \(A=1.2.3.4+2.3.4.5+...+97.98.99.100\)
\(5A=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5\)
\(5A=1.2.3.4.5+2.3.4.5.\left(6-1\right)+...+97.98.99.100.\left(101-96\right)\)
\(5A=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100\)
\(5A=97.98.99.100.101\)
\(A=\frac{97.98.99.100.101}{5}=1901009880\)