Chung minh rang :
a; ( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 )
b; ( n + 2 ) ( n + 9 ) + 21 ( ko chia het cho 49 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`sqrta+1>sqrt{a+1}`
`<=>a+2sqrta+1>a+1`
`<=>2sqrta>0`
`<=>sqrta>0AAa>0`
`sqrt{a-1}<sqrta`
`<=>a-1<a`
`<=>-1<0` luôn đúng
`sqrt6-1>sqrt3-sqrt2`
`<=>sqrt6-sqrt3+sqrt2-1>0`
`<=>sqrt3(sqrt2-1)+sqrt2-1>0`
`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng
a: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{EBD}=\widehat{ECD}\)
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔABC có
BD là đường phân giác
nên AD/DC=AB/BC=AC/BC(1)
Xét ΔABC có
CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AE/EB=AD/DC
hay DE//BC
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
a: Xét ΔCIA và ΔCIM có
CI chung
IA=IM
CA=CM
Do đó: ΔCIA=ΔCIM
a)
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
b)
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giả thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Câu a :
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Câu b :
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Nguồn :Toán Tiểu Học Pl