Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chug
Do đó: ΔABC∼ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét tứ giác ACDH có
M là trung điểm của AD
M là trung điểm của CH
Do đó: ACDH là hình bình hành
Suy ra: AH//DC
a.Xét tam giác ABC và tam giác HBA, có:
^A=^H = 90 độ
^B: chung
Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BC.HB\)
b.Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC=\sqrt{15^2+20^2}=25cm\)
Ta có:\(AB^2=BC.HB\)
\(\Leftrightarrow15^2=25HB\)
\(\Leftrightarrow HB=9cm\)
\(\Rightarrow HC=25-9=16cm\)
c. Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)
\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
c: ΔHBA đồng dạng với ΔABC
=>BH/BA=HA/AC
=>BH*AC=BA*HA
=>BH*AC=BD/2*2*AH=BD*AM
=>BH/AM=BD/AC
=>ΔBHD đồng dạng với ΔAMC
=>HD/MC=BD/AC
=>HD*AC=MC*BD
d: góc AMC=góc MHC+góc HCM
góc AMC=góc BHD
=>góc BHD=góc MHC+góc HCM
=>90 độ+góc MHD=90 độ+góc HCM
=>góc MHD=góc HCM
mà góc MCH+góc HMC=90 độ
nê góc MHD+góc HMC=90 độ
=>MC vuông góc HD
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
a) Xét tam giác ABC và tan giác HBA, ta có:
ˆBACBAC^=ˆBHABHA^(=90o)(=90o)
ˆBB^là góc chung
=> Tam giác ABC ~ tam giác HBA (g-g)
=>ABBHABBH=BCBABCBA (tỉ số tương ứng)
Hay ABBHABBH=BCABBCAB
<=> AB . AB = BC . BH
<=> AB2AB2= BC . BH
b) Xét tam giác ABC và tam giác HAC, ta có:
ˆBACBAC^=ˆAHCAHC^(=90o)(=90o)
ˆCC^là góc chung
=> Tam giác ABC ~ tam giác HAC (g-g)
Mà tam giác ABC ~ tam giác HBA (cmt)
=> Tam giác HBA ~ tam giác HAC (tính chất)
=> HBHAHBHA=HAHCHAHC(tỉ số tương ứng)
Hay HBAHHBAH=AHHCAHHC
<=> AH . AH = HB . HC
<=> AH2AH2= HB . HC
c) Tam giac ABC vuong tai A co:
BC2BC2= AB2AB2+AC2AC2(Pytago)
BC2BC2= 6262+8282
BC2BC2= 100
<=> BC =√100100(BC > 0)
<=> BC = 10 (cm)
Mat khac: BC = HB + HC
Tam giac HAC vuong tai H co:
AC2AC2=AH2AH2+HC2HC2(Pytago)
8282= HB . HC + HC2HC2
64 = HC (HB + HC)
64 = HC . BC
64 = HC . 10
=> HC = 6,4 (cm)
Ma BC = HB + HC
=> 10 = HB + 6,4
<=> HB = 3,6 (cm)
Ta co:
AH2AH2= HB . HC (cmt)
=>AH2AH2= 3,6 . 6,4
<=> AH2AH2= 23,04
<=> AH = √23,0423,04(AH > 0)
<=> AH = 4,8 (cm)