Chứng minh các số có dạng \(a^2+1\) thì các ước nguyên tố lẻ của số đó luôn có dạng 4m+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các khẳng định: 1. Ước nguyên tố của 30 là 5 và 6. - Khẳng định này là sai, vì ước của 30 là 1, 2, 3, 5, 6, 10, 15, 30. 2. Tích của hai số nguyên tố bất kì luôn là số lẻ. - Khẳng định này là sai, ví dụ: 2 và 3 là hai số nguyên tố nhưng tích của chúng là số chẵn. 3. Mọi số nguyên tố đều là số lẻ. - Khẳng định này là sai, vì số nguyên tố duy nhất là số 2 là số chẵn. 4. Mọi số chẵn đều là hợp số. - Khẳng định này là đúng, vì một số chẵn bao gồm ít nhất hai thừa số riêng biệt (2 và số chẵn đó) nên nó là hợp số. 5. Ước nguyên tố nhỏ nhất của số chẵn là 2. - Khẳng định này là đúng, vì một số chẵn luôn có ước nguyên tố chung là số 2.
Khẳng định 1 sai vì 30 = 2.3.5 nên có ước nguyên tố là 2; 3; 5
Khẳng định 2 sai vì 2 và 3 là số nguyên tố nhưng 2.3=6 là số chẵn
Khẳng định 3 sai vì 2 là số nguyên tố nhưng 2 là số chẵn
Khẳng định 4 sai vì 2 là số chẵn nhưng 2 là số nguyên tố
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!