Giá trị x lớn nhất thỏa mãn:\(\frac{9}{\left|x+1\right|}+\frac{\left|x+1\right|}{9}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
ta có \(\frac{9}{\left|x+1\right|}\ge1;\frac{\left|x+1\right|}{9}\ge1\left(1\right)\)
vì \(\frac{9}{\left|x+1\right|}+\frac{\left|x+1\right|}{9}=2\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\frac{9}{\left|x+1\right|}=\frac{\left|x+1\right|}{9}=1\Leftrightarrow\left|x+1\right|=9\Leftrightarrow\hept{\begin{cases}x+1=-9\Rightarrow x=-10\\x+1=9\Rightarrow x=8\end{cases}}\) vậy GTLN của x=8
Khi \(x\ge-1\) ta có phương trình: \(\frac{9}{x+1}+\frac{x+1}{9}=2\Leftrightarrow\frac{81+x^2+2x+1}{9\left(x+1\right)}=2\Leftrightarrow\frac{x^2+2x+82}{9x+9}=2\)
\(\Leftrightarrow x^2+2x+82-18x-18=0\Leftrightarrow x^2-16x+64=0\Leftrightarrow x=8\left(tmđk\right)\)
Khi \(x< -1\), ta có phương trình \(\frac{9}{x+1}+\frac{x+1}{9}=-2\Leftrightarrow\frac{81+x^2+2x+1}{9\left(x+1\right)}=-2\Leftrightarrow\frac{x^2+2x+82}{9x+9}=-2\)
\(\Leftrightarrow x^2+2x+82+18x+18=0\Leftrightarrow x^2+20x+100=0\Leftrightarrow x=-10\left(tmđk\right)\)
Vậy x lớn nhất thỏa mãn là x = 8.
bao quynh Cao: Đánh giá (1) của em không đúng nhé :)