Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Nửa chu vi tam giác ABC là:
\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)
\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)
=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)
=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)
=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2+\dfrac{135}{64}=4\)
=>\(HB^2=\dfrac{121}{64}\)
=>HB=11/8(cm)
HB+HC=BC
=>HC+11/8=4
=>HC=4-11/8=21/8(cm)
b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB
Vì BK\(\perp\)AC và CE\(\perp\)AB
nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)
=>\(\widehat{BAC}\simeq104^029'\)
Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)
=>\(\widehat{B}\simeq46^034'\)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}+104^029'+46^034'=180^0\)
=>\(\widehat{ACB}=28^057'\)
Bài 40:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
c: Ta có: AD=DE
mà DE<DC
nên AD<DC
d: Ta có: ΔADF=ΔEDC
nên AF=EC
Xét ΔBFC có
\(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
Do đó: AE//CF
Ta có: \(BD+CD=BC=4\)
\(\Rightarrow BD=4-CD\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{4-CD}{2}=\dfrac{CD}{3}\)
\(\Rightarrow12-3CD=2CD\)
\(\Rightarrow CD=\dfrac{12}{5}\left(cm\right)\)
\(BD=4-CD=\dfrac{8}{5}\left(cm\right)\)
Áp dụng định lí trên ta có: Δ ABC, AD là đường phân giác của góc B A C ^ ( D ∈ BC )
Ta có DB/AB = DC/AC hay 2/3 = DC /4 ⇒ DC = (2.4)/ 3 = 8/3 = 2,(6 ) ( cm )
Áp dụng định lí trên ta có: Δ ABC, AD là đường phân giác của góc B A C ^ ( D ∈ BC )
Ta có DB/AB = DC/AC hay 2/3 = DC /4 ⇒ DC = (2.4)/ 3 = 8/3 = 2,(6 ) ( cm )
a: BC=căn 3^2+4^2=5cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔABD=ΔEBD