Cm (n2+n+1)2 -1 chia hết cho 24 với n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(n^2+n-1\right)^2-1\)
\(S=\left(n^2+n-1\right)^2-1^2\)
\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)
\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)
\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)
Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )
\(S=\left(n^2+n-1\right)^2-1\)
\(=\left(n^2+n-1\right)^2-1^2\)
\(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)
\(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)
\(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)
\(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
Tích của 4 số liên tiếp luôn chia hết cho 24
\(\Rightarrow S⋮24\)
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
Chúc sớm tìm được thêm nhiều lời giải nha!
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
Theo đề bài ta có :
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
= \(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)
Ta Thấy :
\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp
Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)
Tích của 2 số tự nhiên liên tiếp chia hết cho 2
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)