K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Chọn D

22 tháng 4 2018

Đáp án cần chọn là: D

Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.

Tương tự:

Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.

Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.

22 tháng 3 2017

Đáp án cần chọn là: B

Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^  (so le trong)

Mà D I B ^ = I B C ^  (gt) nên  D I B ^ = D B I ^

Suy ra tam giác BDI cân đỉnh D.

Do đó DI = DB (1)

Ta có: IE // CB nên suy ra E I C ^ = B C I ^  (so le trong)

Mà E I C ^ = B C I ^  (gt) nên  E C I ^ = E I C ^

Suy ra tam giác EIC cân đỉnh E

Do đó EI = EC (2)

Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE

=> DE = BD + CE

26 tháng 5 2019

Đáp án cần chọn là: D

Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.

Tương tự:

Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.

Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.

9 tháng 1 2018

Đáp án cần chọn là: B

Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^  (so le trong)

Mà D B I ^ = I B C ^  (gt) nên  D I B ^ = D B I ^

Suy ra tam giác BDI cân đỉnh D.

Do đó DI = DB (1)

Ta có: IE // CB nên suy ra E I C ^ = B C I ^  (so le trong)

Mà B C I ^ = E C I ^ (gt) nên  E C I ^ = E I C ^

Suy ra tam giác EIC cân đỉnh E

Do đó EI = EC (2)

Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE

=> DE = BD + CE

30 tháng 11 2014

D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.

E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC

22 tháng 12 2017

TB là j

3 tháng 2 2020

A B C K G D E

+ Xét \(\Delta ABC\)có :

\(DE//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)( định lí Ta - lét ) (1)

+ Xét \(\Delta DBC\)có :

\(AK//BC\left(gt\right)\)

\(\Rightarrow\frac{AK}{BC}=\frac{AD}{DB}\)( định lí Ta - lét ) (2)

+ Xét \(\Delta BEC\)có:

\(AG//BC\left(gt\right)\)

\(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\)( định lí Ta - lét ) (3)

Từ (1) , (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\)

\(\Rightarrow AK=AG\)

\(\Rightarrow A\)là trung điểm của KG (đpcm)

Chúc bạn học tốt !!!