1)Chứng minh rằng: 4n + 7/6n +1 là phân số tối giản
2) Cho A=1-1/2+1/3-1/4+...+1/99-1/100
Chứng tỏ:7/12<A<5/6
Làm ơn giải ra giúp mình nha :-)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯC(2n+1; 3n+2) (1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow6n+3-6n-4⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d=\pm1\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)
=> 2n+1/3n+2 là phân số tối giản
Gọi ƯC(a+1;3a+4)=d(d thuộc Z; d khác 0)
=> a+1 chia hết cho d => 3(a+1) chia hết cho d => 3a+3 chia hết cho d
và 3a+4 chia hết cho d
Suy ra (3a+4)-(3a+3) chia hết cho d
=> 3a+4-31-3 chia hết cho d
=>(3a-3a)+(4-3) chia hết cho d
=>1 chia hết cho d
=> d = 1 hoặc d=-1
=> ƯC(a+1;3a+4)= cộng trừ 1
Vậy a+1/3a+4 là phân số tối giản
Nếu bạn hiểu thì k cho mình nha :))
Gọi d là ƯC(2n+1 và 3n+2)
Ta có
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+ 2 chia hết cho d => 6n+4 chia hết cho d
=> 6n+4 - 6n+3 chia hết cho d => 1 chia hết cho d
=> 2n+1/3n+2 là phân số tối giản
=> đpcm
Gọi d là ước chung lớn nhất của 2n+1 và 3n+2
2n+1 chia hết cho d
=) ---------------------------------------
3n+2 chia hết cho d
6n+3 chia hết cho d
=)--------------------------------------------------
6n+4 chia hết cho d
=)1 chia hết cho d.Mà d thuộc N*=)d=1
=)UCLN(2n+2;3n+2)=1
Vậy phân số.................là phân số tối giản (ĐPCM)
Nhớ k
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Bạn xem ở đây: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath hoặc
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Gọi d = ƯCLN (12n + 1, 30n + 1)
=> 12n + 1 chia hết cho d
và 30n + 1 chia hết cho d
=> 5(12n + 2) = 60n + 10 chia hết cho d
và 2(30n + 1) = 60n + 2 chia hết cho d
=> (60n + 10) - (60n + 2) = 8 chia hết cho d => d = 1, 2, 4 hoặc 8
Do 12n + 1 là số lẻ nên d không thể bằng 2, 4, 8 . vậy d = 1
=> phân số đã cho là phân số tối giản
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản