Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcde ( e chẵn và các chữ số khác nhau từng đôi một )
TH1 : e = 0
Chọn e : 1 cách
Chọn a :5 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo Quy tắc nhân có : 1.5.4.3.2 = 120 .
TH2 : e # 0
Chọn e :2 cách
Chọn a :4 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo quy tắc nhân có :2.4.4.3.2 = 192
=> Có tất cả 192 +120 =312 số chẵn có 5 chữ số khác nhau
-
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.
Ta giải bằng quy tắc nhân như sau:
Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách
Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)
Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn
Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn
Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn
Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn
Theo quy tắc nhân số các số cần chọn là
n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192
Vậy có 192 số cần tìm.
Đặt y=23, xét các số trong đó a;b;c;d;e đôi một khác nhau và thuộc tập {0;1;y;4;5}.
Khi đó có 4 cách chọn a; 4 cách chọn b; 3 cách chọn c; 2 cách chọn d và 1 cách chọn e.
Theo quy tắc nhân có 4.4.3.2=96 số
Khi ta hoán vị trong y ta được hai số khác nhau
Nên có 96.2=192 số thỏa yêu cầu bài toán.
Chọn A.
Có 5 cách chọn chữ số hàng chục ngàn ( Vì 0 ko thể được chọn là chữ số hàng chục ngàn )
Có 5 cách chọn chữ số hàng ngàn
Có 4 cách chọn chữ số hàng trăm
Có 3 cách chọn chữ số hàng chục
Có 2 cách chọn chữ số hàng đ.vị
Vậy có số số tự nhiên khác nhau được lập từ các số 0;1;2;3;4;5 là: 5 x 5 x 4 x 3 x 2 = 600 số
mk đồng ý với ý kiến của baoanh