cho A=2^2008-2^2007+2^2006-2^2005+...+2^2-2
b)tìm số tự nhiên n biết:3A+2=2^(n-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2A=22009-22008+22007-22006+...+23-22
2A+2=22009-22008+22007-22006+...+23-22+2
2A+2=22009-(22008-22007+22006-22005+...+22-2)
2A+2=22009-A
2A+A=22009-2
3A=22009-2
A=(22009-2)/3
b)3A+2=22009-2+2=22009
mà 3A+2=2n-1 nên 22009=2n-1
đề sai r
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
Bài 1:
a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Vì \(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)
Chúc bạn học tốt!