Bài 1: Cho a, b, c, thõa mãn:
2(b*2+ b.c + c*2) = 3( 3-a*c)
Tìm max,min của A =a+b+C
hay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)
Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(A_{min}=3\) khi \(a=b=c=1\)
Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)
\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)
Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)
\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)
\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị
Áp dụng Bất đẳng thức Cauchy cho 3 số thực dương ta có :
\(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^2bb^2cc^2a}=3\sqrt[3]{a^3b^3c^3}=3abc\)
Khi đó :\(P\ge3abc=\left(a+b+c\right)\left(abc\right)\)
...
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv
mà thôi Min làm đr còn max
TKS