Bài 1: giá trị tuyệt đối của x - 5 + x -5 =0. tìm x?
bài 2: tìm x để 137x137x chia hết cho 13
bài 3: với giá trị nào thì 8a + 19 phần 4a + 1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
Bài 1 :
Ta có \(2n-1⋮n-3\) ( \(n\in Z\))
=> \(2\left(n-3\right)+5⋮n-3\)
=> 5\(⋮n-3\)
=> \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Vậy \(n\in\left\{2;-2;4;8\right\}\)
Bài 1:
Ta có: (2n-1)/(n-3)=(2n-6+5)/(n-3)=2+5/(n-3)
Để 2n-1 chia hết cho n-3 thì 2+5/(n-3) phải thuộc Z mà 2 thuộc Z nên 5/(n-3) phải thuộc Z
Hay n-3 thuộc ước của 5 <=>(n-3) thuộc {-5;-1;1;5}
Có bảng:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Nhận xét | TM | TM | TM | TM |
Vậy ...
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
bài 2:137x137x=137x*10 000+137x
=137x*10 001
Ta thấy 10 001 ko chia hết 13
=>137x chia hết 13 mà 13 chia hết 13 nên 7x chia hết 13
=>x=8
\(\frac{8a+19}{4a+1}=\frac{2\left(4a+1\right)+17}{4a+1}=\frac{2\left(4a+1\right)}{4a+1}+\frac{17}{4a+1}=2+\frac{17}{4a+1}\in Z\)
=>17 chia hết 4a+1
=>4a+1\(\in\){1,-1,17,-17}
=>a\(\in\){0;-0,5;-4;5;4}