Chứng tỏ rằng :
3/2^2 + 4/2^3 + ...... + 2014/2^2013 + 2015/2^2014 < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)
\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)
\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)
\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)
\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)
\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2017}{2^{2014}}< 2\)
=> đpcm
Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)