tìm giá trị nhỏ nhất của biểu thức E = 5-3x/4x-8 (x E Z/ x ko = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)
x ∈ Z, x ≠ 2 nên 4x-8≠0
Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)
\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)
Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$
Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất.
Điều này xảy ra khi $2-x$ là số âm lớn nhất.
Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$
$\Rightarrow 2-x$ âm lớn nhất bằng $-1$
Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$
E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất
⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)
⇔x=\(\dfrac{9}{4}\)
Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)⇔\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\text{≥}-36\) ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))
MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)