K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Gợi ý: Gọi , chứng minh được AK ^ BC.

Áp dụng cách làm tương tự 4A suy ra ĐPCM

31 tháng 3 2023

Trã lời dùm

17 tháng 5 2023

mình cần gâps huhu

 

6 tháng 5 2016

a) Chứng minh tam giác AED đông dang tam giác ACB

b) Kẻ HI vuông góc BC

Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.

1 tháng 8 2017

Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .

Chứng minh rằng : BC^2=BH.BD+CH.CE

Bài này em có thể giải như sau

1)1) Ta có:

△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)

⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE

△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)

⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF

Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF

2)2) Dựng HFHF vuông góc BC.BC. Ta có:

△BFH∼△BDC△BFH∼△BDC

⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH

△CFH∼△CEB△CFH∼△CEB

⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH

Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH

các dấu kí tự bạn tự thêm nhé

22 tháng 12 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BDEC có:

∠(BEC) = ∠(BDC) =  90 0

Mà 2 góc này cùng nhìn cạnh BC

⇒ Tứ giác BDEC là tứ giác nội tiếp

27 tháng 5 2022

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

8 tháng 2 2022

giỏi quá bé oiiii