Tính giá trị biểu thức : \(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}\)biết \(a-b=13\)
Đaq cần gấp, thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị biểu thức : \(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}\)biết \(a-b=13\)
Đaq cần gấp, thanks
\(a-b=13\Rightarrow a=b+13\)
thay \(a=b+13\) vào biểu thức thì ta có:
\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)
\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)
cách khác:
\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\) (thay 5 = a - 2b)
\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)
\(=1+1=2\)
Biết a - 2b = 5 tính giá trị biểu thức:
\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)
\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)
\(=1+1=2\)
Vậy B = 2
a-2b=5 => a=2b+5
Thay a=2b+5 vào B thì :
B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5
= 4b+15/4b+15 + b-5/b-5 = 1+1 = 2
Tk mk nha
Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5
a - 2b = 5 \(\Rightarrow\)a = 2b + 5
Thay vào , ta được :
\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)
\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)
\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)
\(B=1+1=2\)
Từ a-2b=5 => a = 2b+5
Thay 2b + 5 vào a, ta có biểu thức :
\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)
\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
thay a-b=13 và 13=a-b vào B ta có
B=\(\frac{2a+a-b}{2a+13}-\frac{3b-a}{2b-\left(a-b\right)}=\frac{2a+13}{2a+13}-\frac{3b-a}{2b-a+b}=1-\frac{3b-a}{3b-a}=1-1=0\)
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
từ a-b=5
=>a=b+5
Ta có:
\(A=\frac{-a-3}{b+8}-\frac{2b+13}{2a+3}=\frac{-\left(b+5\right)-3}{b+8}-\frac{2b+13}{2.\left(b+5\right)+3}\)
\(=\frac{-b-8}{b+8}-\frac{2b+13}{2b+10+3}=\frac{-\left(b+8\right)}{b+8}-\frac{2b+13}{2b+13}=-1-1=-2\)
Vậy a=-2
a-b=5
=> a=5+b
Thay a=5+b vao A
Ta co:
\(A=\frac{-\left(5+b\right)-3}{b+8}-\frac{2b+13}{2\left(5+b\right)+3}\)
\(A=\frac{-b-8}{b+8}-\frac{2b+13}{2b+13}\)
\(A=\frac{-\left(b+8\right)}{b+8}-1=-1-1=-2\)
Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:
\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)
\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)
\(a-b=13\) => \(a=b+13\)
Thay \(a=b+13\) vào biểu thức thì ta sẽ có:
\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)
\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)
\(=\frac{2a\left(a-b\right)}{2a+13}-\frac{2b-\left(a-b\right)}{2b-13}=\frac{2a+13}{2a+13}-\frac{2b-13}{2b-13}=1-1=0\)