Cho k là một số tự nhiên lẻ. Chứng minh rằng
( 1k + 2k + 3k +4k +....+ n^k) chia hết cho 1+2+3+4+...+n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0
A=1k+2k+...+(n-1)k+nk ; 2B=2(1+2+...+n)=n(n+1)
2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)
2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n
Vậy A \(⋮\)B
Dùng phép quy nạp toán học (lớp 6)
Với k = 0: \(2^{3k+1}+5=2^1+5=7⋮7\Rightarrow\)Mệnh đề đúng với k = 1(1)
Giả sử điều đó đúng với k = t tức là \(2^{3t+1}+5⋮7\)(đây là giả thiết qui nạp) (2)
Ta sẽ c/m điều đó cũng đúng với k = t + 1.Tức là c/m:
\(2^{3\left(t+1\right)+1}+5⋮7\)hay \(2^{3t+4}+5⋮7\)
Ta có: \(2^{3t+4}+5=2^3\left(2^{3t+1}+5\right)-35\)
Dễ dàng thấy: \(2^3\left(2^{3t+1}+5\right)⋮7\) (do giả thiết qui nạp)
\(35⋮7\) (hiển nhiên)
Suy ra \(2^3\left(2^{3t+1}+5\right)-35⋮7\)hay \(2^{3t+4}+5⋮7\) hay \(2^{3\left(t+1\right)+1}+5⋮7\) (3)
Từ (1);(2) và (3) theo nguyên lí quy nạp toán học,ta có điều phải c/m
\(2^{3k+1}+5=2^{3k}.2+5=8^k.2+5\)
Ta có: 8 chia 7 dư 1 => \(8^k\)chia 7 dư 1 (vì (7,8)=1)
Đặt: \(8^k\)=7t+1
=> \(2^{3k+1}+5=\)(7t+1).2+5=7t.2+7 chia hết cho 7
Ta có: \(n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)
\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)
\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)
\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)
\(=8k.\left(k+2\right)\left(k+1\right)\)
\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)
\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)
\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)
\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)
\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)
\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)
\(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)
Ta có:
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Với n=2k+1. Do đó ta có:
\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)
\(=8\left(k+2\right)\left(k+1\right)k\)
Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)
Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)
mà (2; 3) =1
=> \(k\left(k+1\right)\left(k+2\right)⋮6\)
=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)