Chứng minh rằng nếu : x>y và xy = 2 thì \(\frac{x^2+y^2}{x-y}\ge\)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x, y >0 nên bất đẳng thức tương đương với :
\(\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\left(1+xy\right)\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(2+2x+2y+x^2+y^2\right)\left(1+xy\right)\ge\left(1+2x+x^2\right)\left(1+2y+y^2\right)\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)
Bất đẳng thức này luôn đúng
Dấu bằng xảy ra khi x=y=1
\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)
Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)
\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).
Dấu "=" xảy ra <=> x=y=1/2.
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Cho x, y là các số thực thỏa mãn \(x^2+y^2-xy=1\).. Chứng minh rằng:
\(x^4+y^4-x^2y^2\ge\frac{1}{9}\)
đặt x2 + y2 = a; xy = b. khi đó a - b = 1 hay a = b + 1.
ta phải chứng minh x4 + y4 - x2y2 \(\ge\)\(\frac{1}{9}\)hay a2 - 3b2 \(\ge\)\(\frac{1}{9}\) (1)
thế a = b + 1 vào (1) ta được 9b2 - 9b - 4 \(\le\)0 hay (3b + 1)(3b - 4) \(\le\)0 hay \(\frac{-1}{3}\le b\le\frac{4}{3}\)
ta sẽ chứng minh \(\frac{-1}{3}\le b\le\frac{4}{3}\).
thật vậy
ta có x2 + y2\(\ge\)2xy nên từ giả thiết suy ra xy \(\le\) 1 hay b \(\le\)1 nên b \(\le\)\(\frac{4}{3}\)
mặt khác từ giả thiết ta có (x + y)2 - 3xy = 1 nên 3xy + 1 = (x + y)2\(\ge\)0 hay xy \(\ge\)\(\frac{-1}{3}\)hay b \(\ge\)\(\frac{-1}{3}\)
từ đó suy ra đpcm.
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
x2+y2>=2xy=4 (theo BDT Co-si)
x>y => x-y>0
Toi day de roi nhe
giải lại giúp tui nha nãy bị thiếu k để ý