Chứng minh rằng :\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
9 tháng 10 2018
Tổng A có 1000 số hạng.
\(A>\frac{1001}{1000^2+1000}.1000=\frac{1001.1000}{1000\left(1000+1\right)}=1\)
\(A< \frac{1001}{1000^2}.1000=\frac{1001}{1000}=1+\frac{1}{1000}< 2\)
Vậy \(1< A< 2\Rightarrow1^2< A^2< 2^2\Rightarrow1< A^2< 4\)
Chúc bạn học tốt.
TN
0
16 tháng 7 2015
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
8 tháng 11 2017
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
J
2
R
0
\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)