thực hiện phép tính:
\(\left(x^2y^2-\frac{1}{2}xy+2y\right).\left(x-2y\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) biết chết liền
b) \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\)
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) =
\(=\dfrac{5\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}\)
=5(x-2y)^3+(x-2y)-1
\(\dfrac{5\cdot\left(2y-x\right)^4+\left(2y-x\right)^2+\left(2y-x\right)}{x-2y}=\dfrac{5\cdot\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}=5\cdot\left(x-2y\right)^3+\left(x-2y\right)-1.\)
Khi hàm số \(\left(ax-by\right)^n\) với n là số chẵn thì ax và by có thể đổi chỗ cho nhau nhưng không thay đổi kết quả