đố ai làm đc bài toán này
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+....+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)???????????????????????????????????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)
Bạn xem lại đề
\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)= \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
=> \(x=10\)
b) Tương tự câu a
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\\ \dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\\ 2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2015}{2017}\\ \dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2015}{2017}:2\\ \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2015}{4034}\\ \dfrac{1}{x+1}=\dfrac{1}{2017}\\ \Rightarrow x+1=2017\\ x=2016\)
\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1}{2}.\frac{2015}{2017}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2015}{4034}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2015}{4034}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)
\(\frac{1}{x+1}=\frac{1}{2017}\)
\(\Rightarrow\)x+1=2017
\(\Rightarrow\)x=2017-1
x=2016
Vậy x=2016
Chúc bạn học tốt+-*/
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{40341}=\frac{1}{2017}\)
\(\Rightarrow x+1=2017\Rightarrow x=2016\)
#)Giải :
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)
\(=0\)
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)
=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)
\(=0\)
1/3 + 1/6 + 1/10 + .......+2/x(x + 1) = 2015/2017
=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017
=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017
=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]
=> (1/2 + -1/x+1) .2 =2015/2017
=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.
=> -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017
=> -1/x+1 = -1/2017
=>x+1=2017
=> x= 2016
sai đề rùi bạn.
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\left(x+1\right) }=\frac{2015}{4034}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(x=2016\)