K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))

Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)

Suy ra: DE=DF(Hai cạnh tương ứng)

Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

hay \(\widehat{EAD}=\widehat{FAD}=60^0\)

Ta có: ΔAED vuông tại E(gt)

nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)

Ta có: ΔAFD vuông tại F(Gt)

nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)

Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)

\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)

hay \(\widehat{EDF}=60^0\)

Xét ΔDEF có DE=DF(cmt)

nên ΔDEF cân tại D(Định nghĩa tam giác cân)

Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)

nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)

18 tháng 3 2021

CÒN CÂU B,C 

MÌNH CẦN GẤP

hỏi từ năm trước xong mốc meo không ai trả lời mới chán chớ..

5 tháng 7 2016

A B C D E F K I

a,VÌ AD là p/g của ^A nên ^EAD = ^IAD =  \(\frac{1}{2}\)^ EAI = \(\frac{1}{2}\cdot60^o=30^o\)

Xét tam giác vuông EAD và tam giác vuông IAD ta có: ^EAD = ^IAD ; chung AD 

Nên tam giác vuông AED = tam giác vuông IAD (cạnh huỳen - góc nhọn)

do đó DE = DF (2 cạnh tương ứng) nên tam giác DEF cân tại D \(\left(1\right)\)

Do đó ^ADE = ^IDA =\(30^o\)mà ^EDI = ^ADE + ^IDA = \(30^o+30^o=60^o\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)-> tam giác DEF đều. (ĐPCM)

b, Xét tam giác vuông DEF và tam giác vuông DEI, ta có:  DE = DF ; KE = FI

nên tam giác vuông DEF = tam giác vuông DEI (2 cạnh góc vuông)

do đó  DK = DI (2 cạnh tương ứng)

Nên tam giác DKI cân tại D (ĐPCM)

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

30 tháng 3 2017

Giúp mình bài này đi ạ! 

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

18 tháng 7 2017

a) \(DE⊥AB\) (giả thiết)

\(\Rightarrow\widehat{DEA}=\widehat{DEK}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DEA\) vuông tại E (định nghĩa)

\(DF⊥AC\) (giả thiết)

\(\Rightarrow\widehat{DFA}=\widehat{DFI}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DFA\) vuông tại F (định nghĩa)

\(\Delta DEA\) vuông tại E và \(\Delta DFA\) vuông tại F có:

\(\widehat{DAE}=\widehat{DAF}\) (AD là phân giác \(\widehat{BAC}\))

AD chung

\(\Rightarrow\Delta DEA=\Delta DFA\) (cạnh huyền - góc nhọn)

\(\Rightarrow DE=DF\) (cặp cạnh tương ứng);

\(\widehat{EDA}=\widehat{FDA}\) (cặp góc tương ứng)

AD là phân giác \(\widehat{BAC}\) (giả thiết)

\(\Rightarrow\widehat{DAE}=\widehat{DAF}=\frac{\widehat{BAC}}{2}=\frac{120\text{°}}{2}=60\text{°}\) (định nghĩa)

\(\Delta DEA\) vuông tại E (chứng minh trên)

\(\Rightarrow\widehat{DAE}+\widehat{EDA}=90\text{°}\) (tính chất tam giác vuông)

\(60\text{°}+\widehat{EDA}=90\text{°}\)

\(\widehat{EDA}=30\text{°}\)

\(\widehat{EDA}=\widehat{FDA}\) (chứng minh trên)

\(\Rightarrow\widehat{FDA}=30\text{°}\)

\(\widehat{EDF}=\widehat{EDA}+\widehat{FDA}=30\text{°}+30\text{°}=60\text{°}\)

b) \(\Delta DEK\) và \(\Delta DFI\) có:

DE = DF (chứng minh a)

\(\widehat{DEK}=\widehat{DFI}\left(=90\text{°}\right)\)

EK = FI (giả thiết)

\(\Rightarrow\Delta DEK=\Delta DFI\left(c.g.c\right)\)

\(\Rightarrow DK=DI\) (cặp cạnh tương ứng)

c) \(\widehat{BAC}+\widehat{MAC}=180\text{°}\) (2 góc kề bù)

\(120\text{°}+\widehat{MAC}=180\text{°}\)

\(\widehat{MAC}=60\text{°}\)

CM // AD (giả thiết)

\(\Rightarrow\widehat{ACM}=\widehat{DAF}=60\text{°}\) (2 góc so le trong)

Xét \(\Delta AMC\) có: \(\widehat{MAC}+\widehat{ACM}+\widehat{CMA}=180\text{°}\) (tổng 3 góc trong một tam giác)

Thay số: \(60\text{°}+60\text{°}+\widehat{CMA}=180\text{°}\)

\(120\text{°}+\widehat{CMA}=180\text{°}\)

\(\widehat{CMA}=60\text{°}\)

d) Kẻ FG ∩ AD = {G} sao cho FG = AG

\(\Rightarrow\Delta FAG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\widehat{DAF}=60\text{°}\) (chứng minh a)

\(\Rightarrow\Delta FAG\) đều (dấu hiệu nhận biết tam giác đều)

\(\Rightarrow\widehat{AFG}=60\text{°}\) (tính chất tam giác đều);

AF = FG = AG (định nghĩa tam giác đều) (1)

\(\widehat{AFG}+\widehat{DFG}=\widehat{DFA}\)

\(60\text{°}+\widehat{DFG}=90\text{°}\)

\(\widehat{DFG}=30\text{°}\)

\(\widehat{FDA}=30\text{°}\) (chứng minh a)

\(\Rightarrow\Delta DFG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\Rightarrow DG=FG\) (định nghĩa tam giác cân) (2)

Từ (1) và (2) \(\Rightarrow AG=DG\)

\(G\in AD\)

\(\Rightarrow\) G là trung điểm AD (định nghĩa)

\(\Rightarrow AG=\frac{AD}{2}=\frac{4}{2}=2\left(cm\right)\)

mà AF = AG (chứng minh trên)

\(\Rightarrow AF=2cm\)

10 tháng 2 2018

phịch