Cho p là số nguyên tố. Hỏi p^ 10-1 là số nguyên tố hay hợp số\
Giúp mk nhé
THANK YOU SO MUCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2000 chia 3 dư 2
mà n^2 là số chính phương nên n^2 chia dư 0 hoặc dư 1
Với n^2 chia 3 dư 0 => n chia hết cho 3 => n không là số nguyên tố
=> n^2 chia 3 dư 1
Vậy n^2 + 2000 chia 3 dư 3 hay n^2 + 2000 chia hết cho 3
=> n^2 + 2000 là số nguyên tố
Vì n là số nguyên tố cho nên n^2 chia 3 dư 0 hoặc dư 1
+Nếu n^2 chia 3 dư 0 => n chia hết cho 3 mà n là số nguyên tố nên n = 3 => n^2+2000 = 3^2+2000= 2009 là hợp số
+Nếu n^2 chia 3 dư 1 => n^2 - 1 chia hết cho 3
=> n^2 +2000 = n^2-1+2000+1 = n^2 -1+2001 chia hết cho 3
Mà n^2+2000 > 2000
=> n^2 +2000 là hợp số
Vậy n là số nguyên tố thì n^2+2020 là hợp số
\(p=7\Rightarrow2p+1=15\)(là hợp số)
\(p=11\Rightarrow\hept{\begin{cases}2p+1=23\\4p+1=45\left(hopso\right)\end{cases}}\)(hopso=hợp số)
Với p>11 mà p nguyên tố \(\Rightarrow p=11k+1;11k+2;....;11k+10\)
Với \(p=11k+5\)
\(\Rightarrow p=2\left(11k+5\right)+1=22k+11⋮11\)
Mà 22k+11>11=>2p+1 là hợp số
Bạn xét tiếp với \(=11k+1;..;11k+4;11k+6;...;11k+10\)vào 4p+1 để xem nó là hợp số hay nguyên tố
Kết luân: To be continue
1. 4p+1 là hợp số
2.p+8 là số nguyên tố
Mọi người tick ủng hộ nhé
Ta cho 1 VD để chứng minh :
\(3.3.3.3.3.3.3.3.3.3=59049\)
Mà : \(59049-1=59048⋮2;4;...\)
=> P10-1 là hợp số
p+2 ;p+8 ;4*p*p+1
+ nếu p=2p=2 thì p+2=4⋮2p+2=4⋮2 là hợp số (loại)
+ p=3p=3 thì p+2=5p+2=5 là số nguyên tố; p+8=11p+8=11 là số nguyên tố; 4p2+1=374p2+1=37 là số nguyên tố (tm)
+ với p>3p>3 thì p=3k+1p=3k+1 hoặc p=3k+2
Với p=3k+1p=3k+1 thì: p+8=3k+9⋮3p+8=3k+9⋮3 là hợp số (loại)
CM tương tự với p=3k+2p=3k+2.
Kết luận: p=3p=3 thì p,p+2;p+8;4p2+1p,p+2;p+8;4p2+1 cùng là số nguyên tố
Theo mình thì p^10-1 là số nguyên tố
p10 - 1 hay là p10-1 zậy bn???
68679870780