Cho xy>=24 và x+y>=0 và x,y đều là số tự nhiên
Hay tìm số cặp x,y thoả x+y=xy/24
Cam ơn rất nhiều ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$
$\frac{1}{xy}=6$
$\Rightarrow xy=\frac{1}{6}$
$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$
$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$
Vì $y<0$ nên $y=\frac{-1}{3}$
$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$
Mà $\frac{-1}{2}< \frac{-1}{3}$ nên loại (do $x> y$)
Vậy không tồn tại $x,y$ thỏa mãn đề.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Leftrightarrow 3x^2-10xy+3y^2=0\Leftrightarrow (x-3y)(3x-y)=0\)
Thay trường hợp vòa là xong