cho tam giac nhon ABC co AB< AC ve duong cao ah
a CM HB,HC
b CM goc C< goc B
so sanh BAHva CAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\widehat{B_1}+\widehat{B_2}+\widehat{B_3}=180^o\)
\(\Rightarrow\widehat{B_1}+\widehat{B_3}=90^o\left(\widehat{B_2}=90^o\right)\)
Trong t/g AHB có: \(\widehat{B_3}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{B_1}=\widehat{BAH}\) hay \(\widehat{DBM}=\widehat{BAH}\)
Ta có: \(\widehat{C_1}+\widehat{C_2}+\widehat{C_3}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{C_3}=90^o\left(\widehat{C_2}=90^o\right)\)
Trong t/g ACH có: \(\widehat{C_1}+\widehat{CAH}=90^o\)
\(\Rightarrow\widehat{C_3}=\widehat{CAH}\) hay \(\widehat{ECN}=\widehat{CAH}\)
Vậy...
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔACE vuông tại A có AF là đường cao ứng với cạnh huyền CE, ta được:
\(CF\cdot CE=CA^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AD là đường cao ứng với cạnh huyền BC, ta được:
\(CD\cdot CB=CA^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CF\cdot CE=CD\cdot CB\)