K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AB=15cm

Xét ΔABC có BM là phân giác

nên AM/AB=MC/BC

=>AM/15=MC/25

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{15}=\dfrac{MC}{25}=\dfrac{AM+MC}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: CM=12,5(cm)

b: Xét ΔNAC vuông tại A và ΔNDB vuông tại D có 

\(\widehat{N}\) chung

Do đó: ΔNAC\(\sim\)ΔNDB

Suy ra: NA/ND=NC/NB

hay \(NA\cdot NB=ND\cdot NC\)

a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)

hay \(AB=\sqrt{225}=15cm\)

Xét ΔABC có

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{CM}{BC}=\frac{AM}{AB}\)

hay \(\frac{CM}{25}=\frac{AM}{15}\)

Ta lại có: CM+AM=AC=20cm(M nằm giữa A và C)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{CM}{25}=\frac{AM}{15}=\frac{CM+AM}{25+15}=\frac{AC}{40}=\frac{20cm}{40}=\frac{1}{2}\)

Do đó: \(CM=\frac{25\cdot1}{2}=12,5cm\)

Vậy: AB=15cm; CM=12,5cm

27 tháng 2 2018

bạn vẽ hình đi

a: AC=15cm

b: Đề sai rồi bạn

8 tháng 3 2022

bạn tự vẽ hình nhá:

 

Xét ΔΔABC vuông tại A có :

AB2+AC2=BC2( định lý pitago)

⇒⇒ 202+AC2= 252

⇒⇒ 400 + AC2= 625

⇒⇒AC2=625-400

⇒⇒AC2=225

⇒⇒AC2=152

⇒⇒AC = 15

b)

Cái này là BA = AK chứ

Xét ΔΔBAC và ΔΔCAK có :

AC chung

BA=AK

góc BAC = góc CAK (=90 độ )

Do đó : ΔΔABC = ΔΔAKC ( hai cạnh góc vuông )

⇒⇒BC=CK ( hai cạnh tương ứng )

⇒⇒ΔΔBCK cân tại C

c) ta có : d ⊥⊥AC

AB⊥⊥AC

nên d // AB

=> a//BK ( ba điểm này thẳng hàng mà )

=> góc BKC = góc KCM ( hai góc so le trong )

Xét ΔΔBIK và ΔΔCIM có :

IK = IC ( I là trung điểm của CK )

góc BIK = góc CIM ( đối đỉnh )

góc BKI= góc ICM ( cmt )

Do đó : .. hai tam giác này bằng nhau

và suy ra BI = IM

b: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là phân giác

nên AEDF là hình thoi

12 tháng 8 2018

chơi bang bang 2 ko

23 tháng 2 2019

a, CD ⊥⊥ BD => ∠EDB=90∘∠EDB=90∘
tam giác ABC vuông tại A => CAE = 90 độ

xét tam giác EBD và tam giác ECA
có EDB=ECA=90 độ
CEA chung
=> tam giác EBD đồng dạng với tam giác ECA g-g)
=>EB / EC = ED / EA => EA . EB = EC . ED

b,
từ câu a , ta có tam giác EBD đồng dạng với tam giác ECA =>EB / EC = ED / EA => ED/EB = EA / EC (1)
xét tam giác EAD và tam giác ECB có ED/EB = EA /EC ( theo (1))
góc DEA chung
=> tam giác EAD đồng dạng với tam giác ECB
=> góc EAD = góc ECB ( 2 góc tương ứng )

c , MI vuông góc với BC tại I => MIB =90 độ (1)
tam giác CAB vuông tại A => MAB = 90 độ(2)
từ (1) và (2) => tứ giác AMIB có MIB +MAB=180 độ l;à tứ giác nội tiếp đường tròn => MAI =MBI ( 2 góc liên tiếp )

23 tháng 2 2019

Nhớ hỏi vào môn toán