Bài 3: Cho hình vuông ABCD có cạnh 12 cm.
a) Tính diện tích hình vuông ABCD.
b) Gọi M, N là trung điểm của AB và BC. Tính diện tích tam giác MND.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích hình chữ ABCD là:
S = AB . BC = 12 . 7 = 84 (cm2).
Độ dài cạnh AM là:
8:2=4(cm)
Độ dài cạnh AM cũng chính là độ dài của cạnh MB,BN,NC.
Diện tích hình tam giác AMD là :
4x8:2=16(cm2)
Diện tích hình tam giác NCD là:
8x4:2=16(cm2)
Diện tích hình tam giác MBN là:
4x4:2=8(cm2)
Diện tích hình vuông ABCD là :
8x8=64(dm2)
Diện tích hình tam giác MND là :
64-(8+16 + 16)=24(dm2)
Đáp số:24dm2
Chúc bạn học tốt!
Bài làm:
a, \(S_{ABCD}=24.24=576\left(cm^2\right)\)
b, \(\Delta NDC\&\Delta MCB\)Có:
\(MB=NC,\widehat{B}=\widehat{C}=90^o,BC=DC\)
\(\Rightarrow\Delta NDC=\Delta MCB\left(c.g.c\right)\Rightarrow\widehat{N_1}=\widehat{M_1}\)
\(\Delta MBC\)CÓ: \(\widehat{M_1}+\widehat{B}+C_1=180^o\), mà góc B=90 độ
\(\Rightarrow\widehat{M_1}+\widehat{C_1}=90^o\), mà \(\widehat{N_1}=\widehat{M_1}\)
\(\Rightarrow\widehat{N_1}+\widehat{C_1}=90^o\)
=> góc NIC=90 độ
MB= AB/2 = 24/2 =12 (cm)
\(S_{MBC}=\frac{12.24}{2}=144\left(cm^2\right)\)
\(\Delta CIN\&\Delta CBM\)CÓ:
\(\widehat{C}chung,\widehat{B}=\widehat{I}=90^o\)
\(\Rightarrow\Delta CIN\infty\Delta CBM\left(g.g\right)\), mà \(\frac{NC}{BC}=\frac{1}{2}\)
\(\Rightarrow\frac{S_{CIN}}{S_{CBM}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{CIN}=\frac{S_{CBM}}{4}=\frac{144}{4}=36\left(cm^2\right)\)
Chú ý: \(\infty\)là kí hiệu đồng dạng
còn b)
a) Diện tích hình vuông \(ABCD\) là :
\(12\times12=144\left(cm^2\right)\)
b) M,N là trung điểm BC nên \(NB=NC=\dfrac{1}{2}.BC=6\left(cm\right)\)
Diện tích tam giác \(MND\) là :
\(6.12\div2=36\left(cm^2\right)\)