cho tam giác ABC cân tại A( góc A<90độ). Kẻ BM vuông góc với AC tại M,CN vuông góc với AB tại N.BM cắt CN tai I. a) CM : AM=AN b)CM:tam giác MIN là tam giác cân c) Tia AI cắt BC tại K . CM:tam giác KMN là tam giác cân d) Cho AB=13cm,BC=10cm.Tính AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
1)
Ta có tam giác ABC cân tại A => góc B = góc C = (180 - 50) : 2 = 65 độ
2)
Ta có: tam giác ABC cân tại A => góc B = góc C = (180 - góc A) : 2
mà góc B = A + 300
=> (1800 - góc A) : 2 = Â + 300
=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)
=> 900 - Â/2 = Â + 300
=> 900- 300 = Â + Â/2
=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)
=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{NAC}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
Ta có: IB+IM=MB
IN+IC=NC
mà MB=NC
và IB=IC
nên IM=IN
hay ΔMIN cân tại I
c: Xét ΔNBK và ΔMCK có
NB=MC
\(\widehat{NBK}=\widehat{MCK}\)
BK=CK
Do đó: ΔNBK=ΔMCK
Suy ra: KN=KM
hayΔKMN cân tại K