Bài 5. Cho các chữ số: 1; 2; 3; 4; 5
a) Có thể tạo ra bao nhiêu số chẵn gồm 3 chữ số khác nhau?
b) Có thể tạo ra bao nhiêu số lẻ gồm 3 chữ số khác nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Số chẵn có 4 chữ số khác nhau đc lập từ 2 ; 3 ; 5 ; 9 :
9632 ; 9352 ; 5932 ; 5392 ; 3952 ; 3592
Tổng là : 9632 + 9352 + 5932 + 5392 + 3952 + 3592 = 37852
Bài 2 :
Tương tự
Bài 3 :
Tương tự
Bài 4 :
Câu hỏi của minh mini - Toán lớp 4 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/184832485431.html
Bài 1: Tính tổng các số chẵn có 4 chữ số khác nhau từ các chữ số : 2 ; 3 ; 5 ; 9
3592 + 3952 + 5392 + 5932 + 9532 + 9352 = 37822
Bài 2 : Cho các chữ số : 1 ; 3 ; 5 ; 7 ; 9
Tính tổng các số có 4 chữ số khác nhau từ các chữ số trên ?
1357 + 1375 + 1359 + 1395
Bài 6
Chọn chữ số 1 ở hàng chục nghìn ta lập được 24 số
Tương tự nên ta lập được
24 x 5 = 120 (số)
Tổng là:
(1 + 2 + 3 + 4 + 5) x 10000 x 24 + (1 + 2 + 3 + 4 + 5) x 1000 x 24 + (1 + 2 + + 3 + 4 + 5) x 100 x 24 + (1 + 2 + 3 + 4 + 5) x 10 x 24 + (1 + 2 + 3 + 4 + 5) x x 1 x 24
= (1 + 2 + 3 + 4 + 5) x 24 x 11111
= 15 x 24 x 11111 = 3999960
Bài 6:
Ta lập được 3 số 334, 343, 433
Tổng các số:
(3 + 3 + 4) x 100 x 1 + (3 + 3 + 4) x 10 + (3 + 3 + 4) x 1
= 10 x (10 + 10 + 1)
= 10 x 111 = 1110
.
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
1) gọi số đó là ab ( a khác 0 ; a; b là chữ số)
Theo bài cho: ab = 5(a+ b) => 10a + b = 5a + 5b => 10a - 5a = 5b - b => 5a = 4b
Chỉ có a = 4; b = 5 thỏa mãn
Vậy số đó là 45
2) Gọi số đó là ab
ta có: ab : (a + b) = 5 (dư 12)
=> ab = 5(a + b) + 12
=> 10a + b = 5a + 5b + 12
=> 5a = 4b + 12
Vì 4b + 12 chia hết cho 4 nên a chia hết cho 4 => a = 4 hoặc a = 8
a = 4 => b = 2
a = 8 => b = 7
Vậy số đó là 42 hoặc 87
Bài 1 :
Gọi số có hai chữ số cần tìm là ab
Theo bài ra ta có : ab = 5 . ( a + b )
a. 10 + b = 5a + 5b
5a + 5a + b . 1 = 5a + 4.b + b.1
Bớt cả hai bên cho 5a và 1b ta được :
5a = 4b
=> 5a là số chia hết cho 4 mà a là chữ số nên 5a = 20 => a = 4 => b = 5
Vậy số cần tìm là 45
a: Gọi số cần tìm là \(\overline{abcde}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
e có 1 cách chọn
=>Có \(4\cdot4\cdot3\cdot2\cdot1=16\cdot6=96\left(số\right)\)
b: Gọi số cần tìm là \(\overline{abcd}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
Do đó: Có \(4\cdot4\cdot3\cdot2=96\left(số\right)\)
c: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
=>Có 4*4*3=48 số
d: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách
b có 5 cách
c có 5 cách
Do đó: Có \(4\cdot5\cdot5=100\left(số\right)\)
a) Để lập được số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên (0, 1, 2, 3, 4), 5 cách chọn chữ số thứ hai, 5 cách chọn chữ số thứ ba, 5 cách chọn chữ số thứ tư và 5 cách chọn chữ số thứ năm. Vậy tổng số số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4 là 5 x 5 x 5 x 5 x 5 = 3125.
b) Để lập được số tự nhiên có 4 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước), và 2 cách chọn chữ số thứ tư (loại bỏ 3 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 4 chữ số khác nhau là 5 x 4 x 3 x 2 = 120.
c) Để lập được số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), và 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 3 chữ số khác nhau là 5 x 4 x 3 = 60.
d) Để lập được số tự nhiên có 3 chữ số từ các chữ số 0, 1, 2, 3, 4 (có thể có chữ số giống nhau), ta có 5 cách chọn chữ số đầu tiên, 5 cách chọn chữ số thứ hai, và 5 cách chọn chữ số thứ ba. Vậy tổng số số tự nhiên có 3 chữ số (có thể có chữ số giống nhau) là 5 x 5 x 5 = 125....
Bài 1.
Với 5 chữ số khác nhau thì ta có hai trường hợp :
Trường hợp 1 : Có chữ số 0
Khi đó : Hàng chục nghìn có 4 lựa chọn
Hàng nghìn có 5 lựa chọn
Hàng trăm có 5 lựa chọn
Hàng chục có 5 lựa chọn
Hàng đơn vị có 5 lựa chọn
=> Số các số có thể lập : 4 x 5 x 5 x 5 x 5 = 2500 số
Trường hợp 2 : Không có chữ số 0
Khi đó : Hàng chục nghìn có 5 lựa chọn
Hàng nghìn có 5 lựa chọn
Hàng trăm có 5 lựa chọn
Hàng chục có 5 lựa chọn
Hàng đơn vị có 5 lựa chọn
=> Số các số có thể lập : 5 x 5 x 5 x 5 x 5 = 3125 số
KL : Vậy có thể viết được 2500 số < không có chữ số 0 >
3125 số < có chữ số 0 >
Bài 2.
Từ 1 đến 9 có 9 số
=> Số chữ số viết được là 9 chữ số
Từ 10 đến 99 có ( 99 - 10 ) : 1 + 1 = 90 số
=> Số chữ số viết được là 90 x 2 = 180 chữ số
Từ 100 đến 359 có ( 359 - 100 ) : 1 + 1 = 260 số
=> Số chữ số viết được là 260 x 3 = 780 chữ số
=> Bạn Thanh viết được tất cả : 9 + 180 + 780 = 969 chữ số
Đ/s : 969 chữ số
mình nhầm kết luận bài 1 tí :(
2500 số < có chữ số 0 >
3125 số < không có chữ số 0 >
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Tham khảo:
a)Vì là số chẵn nên chữ số hàng đơn vị phải là chữ số chẵn
+ Chữ số hàng đơn vị có 2 cách chọn ( chọn 2 hoặc 4 )
+ Với mỗi cách chọn chữ số hàng đơn vị: Có 4 cách chọn chữ số hàng trăm ( chọn 1 hoặc 3 hoặc 5 và chữ số chẵn còn lại )
+ Với mỗi cách chọn chữ số hàng trăm: Có 3 cách chọn chữ số hàng chục ( chon một số trong các số còn lại )
Vậy ta viết được tất cả: 2 x 3 x 4 = 24 (số)
Chúc e học giỏi
Tham khảo:
a)Vì là số chẵn nên chữ số hàng đơn vị phải là chữ số chẵn
+ Chữ số hàng đơn vị có 2 cách chọn ( chọn 2 hoặc 4 )
+ Với mỗi cách chọn chữ số hàng đơn vị: Có 4 cách chọn chữ số hàng trăm ( chọn 1 hoặc 3 hoặc 5 và chữ số chẵn còn lại )
+ Với mỗi cách chọn chữ số hàng trăm: Có 3 cách chọn chữ số hàng chục ( chon một số trong các số còn lại )
Vậy ta viết được tất cả: 2 x 3 x 4 = 24 (số)