Tìm x nguyên để các phân số sau là số nguyê:
-4 /2x-1
;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
Để G nguyên thì : 6x + 5 chia hết cho 2x - 1
<=> 6x - 3 + 8 chia hết cho 2x - 1
<=> 3.(2x - 1) + 8 chia hết cho 2x - 1
<=> 8 chia hết cho 2x - 1
<=> 2x - 1 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
2x - 1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
2x | -9 | -3 | -1 | 0 | 2 | 3 | 5 | 9 |
x | 0 | 1 |
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
a)
Để : \(\frac{3.x+9}{x+4}\)là số nguyên thì :
3.x + 9 \(⋮\)x + 4
=> 3.x + 12 - 3 \(⋮\)x + 4
=> 3 . ( x + 4 ) - 3\(⋮\)x + 4
=> -3 \(⋮\)x + 4 . Vì 3 . ( x + 4 ) \(⋮\)x + 4
=> x + 4 \(\in\)Ư( -3 ) \(\in\){ -1; 1; -4; 4 }
=> x = { -5; -3; -9; -1 } để \(\frac{3.x+9}{x+4}\)là một số nguyên
b)
Để : \(\frac{2.x-2}{2.x+3}\)là một số nguyên thì :
2.x - 2 \(⋮\)2.x + 3
2.x + 3 - 5 \(⋮\)2.x + 3
=> -5 \(⋮\)2.x + 3 . Vì 2.x + 3 \(⋮\)2.x + 3
=> 2.x + 3 \(\in\)Ư( -5 ) \(\in\){ -1; 1; -5; 5 }
=> 2.x = { -4; -2; -8; 2 }
=> x = { -2; -1; -4; 1 } để \(\frac{2.x-2}{2.x+3}\)là một số nguyên
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn sẽ ko làm như vậy !!!!!
a, Để M nguyên <=> 2x+1 \(⋮\)2
=> 2x+1 \(\in\)Ư (2)={ 2,-2,1,-1}
Đk x \(\in\)Z
Với 2x+1= 2 => x= 1/2. ( loại)
...
Làm tt => x={ 0; -1}
Vậy x= 0, x= -1 thì M nguyên
b, N = (x-3)/x = 1-(3/x)
Để N nguyên <=> 3\(⋮\)x
<=> x \(\in\)Ư(3)={ 1,-1,3,-3}
Vậy x ={ 1,-1,3,-3} thì N nguyên
c, H = (x-2)/2x (1)
Để H nguyên <=>x-2 chia hết cho 2x
=> 2.(x-2) phải chia hết cho 2x
Hay 2.(x-2) /2x = 1-(2/x) nguyên
=> x thuộc Ư (2)={ 2,-2,1,-1}
Thay x vào(1) để H nguyên => x={2,-2}
Vậy x={2,-2} thì H nguyên
-4 chia hết cho 2x-1, có:2x-1 là U(-4)=-4;-1;1;4
2x-1=-4, có x không thuộc Z
2x-1=-1, có x=0
2x-1=1, có x=1
2x-1=4, có x không thuộc Z
Vậy x=0;1