K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(AB^2+AC^2=BC^2\left(Pytago\right).\\ \Rightarrow3^2+AC^2=5^2.\\ \Leftrightarrow AC^2=5^2-3^2=16.\\ \Rightarrow AC=4\left(cm\right).\)

b) Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E:

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác góc B).

BD chung.

\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).

c) Xét \(\Delta ADE:\)

\(AD=ED\) \(\left(\Delta ABD=\Delta EBD\right).\)

\(\Rightarrow\) \(\Delta ADE\) cân tại D.

a: BC=căn 4^2+3^2=5cm

AC<AB<BC

=>góc B<góc C<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

góc EBF chung

=>ΔBEF đồng dạng với ΔBAC

=>BF=BC

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm

a: AB<AC<BC

=>góc C<gócB<góc A

b: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ

=>DB là phân giác của góc ADE và DE vuông góc BC

1 tháng 4 2022

Cứu mình với

 

23 tháng 4 2021

undefined

25 tháng 4 2021

Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?

24 tháng 6 2021

undefined

undefined

 

27 tháng 6 2020

Nhờ vẽ hình cho mình luôn nha

16 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm 

b, Vì DE // AB Theo hệ quả Ta lét 

\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm