K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Đặt dãy trên là A

Khi đó \(A=\frac{2}{6\times10}+\frac{2}{7\times9}+\frac{1}{64}\)

\(A=\frac{1}{30}+\frac{2}{63}+\frac{1}{64}\)

\(A=\frac{672}{20160}+\frac{640}{20160}+\frac{315}{20160}=\frac{1627}{20160}\)

7 tháng 5 2016

Nguyenhoangtien sai bét

1 tháng 9 2015

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

=>\(S=\frac{4}{9}-\frac{1}{5}\)

=>\(S=\frac{11}{45}\)

1 tháng 9 2015

lê chí cường dung 

17 tháng 2 2017

13/30 nhé bạn

17 tháng 2 2017

Kêt quả bằng 13/30

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

4 tháng 8 2018

= 1/1 - 1/5 + 1/5 -1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8-1/9 +...+ 1/2004 - 1/2005

= 1/1 - 1/2005

= 2004/2005

4 tháng 8 2018

ai giúp mình vời

5 tháng 2 2017

a.\(\frac{3\cdot4\cdot7}{12\cdot8\cdot9}\)\(\frac{3\cdot4\cdot7}{3\cdot4\cdot8\cdot9}\)\(\frac{7}{72}\) 

b. \(\frac{4\cdot5\cdot6}{12\cdot10\cdot8}\)\(\frac{4\cdot5\cdot2\cdot3}{3\cdot4\cdot5\cdot2\cdot8}\)\(\frac{1}{8}\) 

c.\(\frac{5\cdot6\cdot7}{12\cdot14\cdot15}\)\(\frac{5\cdot6\cdot7}{2\cdot6\cdot2\cdot7\cdot3\cdot5}\)\(\frac{1}{12}\)

12 tháng 2 2017

Ô phép tính khủng. Cái này do bạn chế ra à !
 

13 tháng 2 2017

khủng chưa My Shipfriend

5 tháng 2 2017

a, \(\frac{3.4.7}{12.8.9}\)\(\frac{3.4.7}{3.4.8.9}\)\(\frac{7}{72}\)

b, \(\frac{4.5.6}{12.10.8}\)\(\frac{4.5.6}{3.4.2.5.8}\)\(\frac{1}{8}\)

c, \(\frac{5.6.7}{12.14.15}\)\(\frac{5.6.7}{2.6.2.7.3.5}\)\(\frac{1}{12}\)

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

26 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)

Cái còn lại tự CM