giúp mình giải bài toán này bằng kiến thức lớp 7 chương 1 nhé.
chứng tỏ rằng 11111...111 - 10n chia hết cho 9
n số 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 111...11(n chữ số 1) có tổng các chữ số = 1 . n = n nên n chia cho 9 dư bao nhiêu thì 111...11(n chữ số 1) chia cho 9 dư bấy nhiêu.
Mà 10n = n0¯¯¯¯¯¯n0¯ nên n + 0 có cùng số dư với n. Vậy, 10n có cùng số dư với 111...11(n chữ số 1).
Vì 111...11(n chữ số 1) và 10n có cùng số dư khi chia cho 9 nên hiệu đó chia hết cho 9
Đặt \(A=1+7+7^2+...+7^9\)
\(\Rightarrow A=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^8+7^9\right)\)
\(\Rightarrow A=8+7^2\left(1+7\right)+...+7^8\left(1+7\right)\)
\(\Rightarrow A=8+7^2.8+...+7^8.8\)
\(\Rightarrow A=\left(1+7^2+...+7^8\right).8⋮8\)
\(\Rightarrow A⋮8\left(đpcm\right)\)
Đặt \(A=1+7+7^2+7^3+...+7^8+7^9\)
\(=\left(7^0+7^1\right)+\left(7^2+7^3\right)+...+\left(7^8+7^9\right)\)
\(=7^0\left(1+7\right)+7^2\left(1+7\right)+...+7^8\left(1+7\right)\)
\(=7^0.8+7^2.8+...+7^8.8\)
\(=8.\left(7^0+7^2+...+7^9\right)⋮8\)
Vậy \(A⋮8\)
\(1+7+7^2+7^3+...+7^8+7^9\)
\(=\left(1+7\right)+7^2\times\left(1+7\right)+...+7^8\times\left(1+7\right)\)
\(=8+7^2\times8+...+7^8\times8\)
\(=8\times\left(1+7^2+...+7^8\right)⋮8\)
1 + 7 + 72 + 73 + ... + 78 + 79 (có 10 số; 10 chia hết cho 2)
= (1 + 7) + (72 + 73) + ... + (78 + 79)
= 8 + 72.(1 + 7) + ... + 78.(1 + 7)
= 8 + 72.8 + ... + 78.8
= 8.(1 + 72 + ... + 78) chia hết cho 8 (đpcm)
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
Đặt \(A=1+7+7^2+...+7^9\)
\(\Rightarrow7A=7+7^2+7^3+...+7^{10}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{10}\right)-\left(1+7+7^2+...+7^9\right)\)
\(\Rightarrow6A=7^{10}-1\)
\(\Rightarrow A=\frac{7^{10}-1}{6}\)
xét:111...111-10n=(1111...111-n)-9n
n chữ số 1. n+1số1
Mà:111111...111-nchia hết cho9 (vì111..111và n khi chia hềt cho 9 có cùng số dư) và 9n chia hết cho9
111,,,111-n-9nchia hết cho 9
111...111-10n chia hết cho 9
vậy1111...111-10n chia hết cho9
đơn giản mà
11111...1 -10n chia hết cho 9
=>11...1-n-9n chia hết cho 9
ta có:
9n chia hết cho 9
=> 11....1-n phải chia hết cho 9 =>tổng số đó chia hết cho 9
mà tổng các chữ số của 111...1=n
vì 1111...1 và n có cùng số dư khi chia cho 9 nên hiệu của nó chia hết cho 9
nên 11....1-n chia hết cho 9
=>111...1-10n chia hết cho 9