K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

có đứa nào ngu như mày ko nguyen hai yen hahahahahah

21 tháng 6 2018

K là điểm gì đấy bạn ơi

28 tháng 10 2020

Mn giải giúp e vs ((

29 tháng 7 2018

A B C D E I M P K F a x

a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)

Điểm I nằm trên AB => BI = AB - AI = a - x

Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)

Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)

b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED

Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).

c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)

\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)

Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).

+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD

Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK

=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).

11 tháng 2 2018

câu a ta có : <MAE = 90

suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )

gọi n là giao điểm của EH và CD

vì <MND =90 độ suy ra <NMD +<MPN=90độ

vì cùng phụ nhau với < m suy ra <MEA =<MDN

xét tam giác ACD và tam giác AME :

AD =AE (GT)

<MEA=<MDN (cmt)

<CAD =<MAE =90độ (do AC vuông góc với MB )

SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)

:A

8 tháng 8 2019

bài này k cần vẽ hình ak bạn