Tìm A biết:
A=1/1.3+1/3.5+......+1/35.37
bạn nào đanh online giúp mình với ! Thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2013.2015}\)
\(\Leftrightarrow2A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\right)\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2015}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2015}=\dfrac{2012}{6045}\)
\(\Leftrightarrow A=\dfrac{1006}{6045}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{2013.2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}+\dfrac{1}{2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2015}\)
2A=\(\dfrac{2014}{2015}\)
A=\(\dfrac{1007}{2015}\)
Khi gặp bài này, bn nên tách 1 phân số ra thành hiệu của 2 phân số.
a) Ta có
1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 5
rút gọn ta được : 1 - 1/x+2 = 5
<=> x + 2 - 1 / x+ 2
<=> x + 1 / x + 2 = 5
<=> x+ 1 = 5x + 10
<=> - 4x = 9
<=> x = -9/4
B) / x +4/ = 2^0 + 1 ^ 2013
=> /x + 4/ = 1 + 1
=> / x + 4 / = 2
TH 1 : x+ 4 = 2
=> x = 2 - 4 = -2
TH2 : x + 4 = -2
=> x = -2 - 4 = -6
=> x = { - 2 , -6 }
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)
\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}\)
\(=\frac{50}{101}\)
=1/2(2/1.3+2/3.5+2/5.7+....+2/2009.2011
=1/2(1/1-1/3+1/3-1/5+1/5-1/7+....+1/2009-1/2011
=1/2(1/1-1/2011)
=1/2.2010/2011
=1005/2011
=1/1-1/3+1/3-1/5+1/5-1/7+....+1/2009-2011
=1-1/2011
=2010/1011
Sửa đề: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2020}{2021}\) \(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x+2}{2021}=1\)
\(\Leftrightarrow x=2019\)
Vậy \(x=2019\)
nhân cả 2 vế với 2 rồi tính như bình thường
k mk nha
Ta tách như sau:
A = 1/3 . 1/5 + 1/5 . 1/7 + ... +1/35 . 1/37
= (Sau khi dùng phương pháp khử liên tiếp ta có)
= 1/3 . 1/37
= 1/111
Theo trí nhớ của mk là như vậy chứ mk chẳng bít đúng hay không nữa.