Cho x-y=2. Tìm giá trị nhỏ nhất của đa thức:
Q= x^2-y^2+x*y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii
1) \(A=x^2+2x+3=\left(x+1\right)^2+2 \)
vi \(\left(x+1\right)^2\ge0\)(voi moi x)
\(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)
Vay GTNN cua A =2 khi x=-1
2) Goi 2 so nguyen lien tiep do la x va x+1
TDTC x+1-x=1
Vi 1 la so le nen x+1-x la so le
Vay .......
3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)
\(=-2y\cdot2x=-4xy\)(dpcm)
4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vi \(\left(x-3\right)^2\ge0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)
Vay GTLN cua Q=10 khi x=3
từ x-y=2
=>y=x-2
Thay x=y-2 vào Q,ta có:
\(Q=x^2-\left(x-2\right)^2+x\left(x-2\right)\)
\(\Rightarrow Q=x^2-\left(x^2-4x+4\right)+x^2-2x=x^2-x^2+4x-4+x^2-2x=\left(x^2-x^2+x^2\right)+\left(4x-2x\right)-4\)
\(=x^2+2x-4=x^2+2x+1-5=x^2+x+x+1-5=x\left(x+1\right)+\left(x+1\right)-5=\left(x+1\right)^2-5\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x E R
=>\(\left(x+1\right)^2-5\ge0-5=-5\) với mọi x E R
=>GTNN của Q là -5
Dấu "=" xảy ra:
<=>\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Mà y=x-2
=>x=-3
Vậy GTNN của Q là -5 tại x=-3;y=-1
Ta có :
\(x-y=2\Rightarrow\left(x-y\right)^2=2^2=4\)
\(\Rightarrow xy+\left(x-y\right)^2=xy+\left(x-y\right)^2\ge xy\)
\(Min_Q=xy\Leftrightarrow x-y=0\Rightarrow x=y\)
_Chúc bạn học tốt_
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)
=> GTLN của đa thức là 8
<=> x-2 = 0
<=> x = 2
\(x^2+y^2-x+6y+15\)
\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
=> GTNN của đa thức là 23/4
<=> x-1/2=0 và y+3=0
<=> x=1/2 và y=-3
Từ x - y = 2 \(\Rightarrow x=y+2\)
Thế vào đa thức Q ta có: \(Q=\left(y+2\right)^2-y^2+\left(y+2\right)y=y^2+6y+4\)
\(\Rightarrow Q=y^2+6y+9-5=\left(y+3\right)^2-5\ge-5\)
Vậy min Q = -5 khi y = -3, x = -1.
Chúc em học tập tốt :)
a ,Q=x2+y2-xy+4y=x(x-y)+y(y+4)=2x+(x-2)(x+2)=x2+2x+1-5=(x+1)2-
b,M=x2-y2+y2+4y+14=2(x+y)+y2+4y+14=2(2+2y)+y2+4y+14=y2+8y+16+2=(y+4)2+2\(\ge\)2