Xác định số dư của phép chia đa thức
x19 + x5 - x1995 cho đa thức x2 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phần dư là \(ax+b\)
\(\Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x^2\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x\right)\left(1+x\right)\cdot a\left(x\right)+ax+b\)
Thay \(x=1\Leftrightarrow a+b=5\left(1\right)\)
Thay \(x=-1\Leftrightarrow b-a=-3\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)
Vậy đa thức dư là \(4x+1\)
Đặt phần dư là ax+bax+b
⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b
Thay x=1⇔a+b=5(1)x=1⇔a+b=5(1)
Thay x=−1⇔b−a=−3(2)x=−1⇔b−a=−3(2)
(1)(2)⇔{a=4b=1(1)(2)⇔{a=4b=1
Vậy đa thức dư là 4x+1
Đa thức dư là – x + 1 có hệ số tự do là 1.
Đáp án cần chọn là: C
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3
Mình xp giúp được mỗi câu đầu thôi nha ;-;;;; 2 câu sau mình chưa học, bạn thông cảm ;-;;;.
`a,` \(\text{P(x) =}\)\(2x^3-3x+x^5-4x^3+4x-x^5+x^2-2\)
`P(x)= (2x^3 - 4x^3)-(3x-4x) +(x^5-x^5) +x^2-2`
`P(x)= -2x^3- (-x)+0+x^2-2`
`P(x)=-2x^3+x+x^2-2`
`Q(x)= x^3-x^2+3x+1+3x^2`
`Q(x)= x^3- (x^2-3x^2) +3x+1`
`Q(x)=x^3- (-2x^2)+3x+1`
a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)
\(\Rightarrow a-b+c-d=2\)
\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)
\(\Rightarrow a+b+c+d=34\)
\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)
\(P\left(2\right)=32-16a+8b-4c+2d-2010\)
\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)
\(=-12a-4.18+2.16+6b-1978\)
\(=-12a+6b-2018=-2084\)
\(\Rightarrow2a-b=11\)
\(P\left(3\right)=243-81a+27b-9c+3d-2010\)
\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)
\(=243-72a+24b-9.18+3.16-2010=-2385\)
\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)
Từ đó ta có \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Dư 1 và -1
Bài này trên violimpic à?
Quen thế.
\(A\left(x\right)=x^{19}+x^5-x^{1995}\)
\(Q\left(x\right)=x^2-1\)
\(A\left(x\right)=Q\left(x\right)+r\)
\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)
Điều này đúng với mọi x thuộc R
Vậy ta có x=1
=> 1+1+1=0+r
=>r=3
Vậy số dư là 3
Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.
Nó còn là một định lí là định lí Bơzu.
Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.