K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Dư 1 và -1

5 tháng 5 2016

Bài này trên violimpic à?

Quen thế.

\(A\left(x\right)=x^{19}+x^5-x^{1995}\) 

\(Q\left(x\right)=x^2-1\)

\(A\left(x\right)=Q\left(x\right)+r\)

\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)

Điều này đúng với mọi x thuộc R

Vậy ta có x=1

=> 1+1+1=0+r

=>r=3

Vậy số dư là 3

Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.

Nó còn là một định lí là định lí Bơzu.

Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.

4 tháng 6 2018

20 tháng 11 2021

Đặt phần dư là \(ax+b\)

\(\Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x^2\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x\right)\left(1+x\right)\cdot a\left(x\right)+ax+b\)

Thay \(x=1\Leftrightarrow a+b=5\left(1\right)\)

Thay \(x=-1\Leftrightarrow b-a=-3\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

Vậy đa thức dư là \(4x+1\)

20 tháng 11 2021

Đặt phần dư là ax+bax+b

⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b

Thay x=1⇔a+b=5(1)x=1⇔a+b=5(1)

Thay x=−1⇔b−a=−3(2)x=−1⇔b−a=−3(2)

(1)(2)⇔{a=4b=1(1)(2)⇔{a=4b=1

Vậy đa thức dư là 4x+1

25 tháng 5 2016

nếu mình học lớp 8 rồi thì mình giải giúp cho bạn

25 tháng 5 2016

chưa chắc lớp 8 giải dc mà cũng nói

10 tháng 7 2017

Đa thức dư là – x + 1 có hệ số tự do là 1.

Đáp án cần chọn là: C

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9

=3x^2+x

c: H(x)=0

=>x(3x+1)=0

=>x=0 hoặc x=-1/3

Mình xp giúp được mỗi câu đầu thôi nha ;-;;;; 2 câu sau mình chưa học, bạn thông cảm ;-;;;.

`a,` \(\text{P(x) =}\)\(2x^3-3x+x^5-4x^3+4x-x^5+x^2-2\)

`P(x)= (2x^3 - 4x^3)-(3x-4x) +(x^5-x^5) +x^2-2`

`P(x)= -2x^3- (-x)+0+x^2-2`

`P(x)=-2x^3+x+x^2-2`

`Q(x)= x^3-x^2+3x+1+3x^2`

`Q(x)= x^3- (x^2-3x^2) +3x+1`

`Q(x)=x^3- (-2x^2)+3x+1`

 

18 tháng 12 2017

a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)

\(\Rightarrow a-b+c-d=2\)

\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)

\(\Rightarrow a+b+c+d=34\)

\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)

\(P\left(2\right)=32-16a+8b-4c+2d-2010\)

\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)

\(=-12a-4.18+2.16+6b-1978\)

\(=-12a+6b-2018=-2084\)

\(\Rightarrow2a-b=11\)

\(P\left(3\right)=243-81a+27b-9c+3d-2010\)

\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)

\(=243-72a+24b-9.18+3.16-2010=-2385\)

\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)

Từ đó ta có  \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)

Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)

28 tháng 3 2017

Ta có đa thức  x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số

Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có

x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1   = Q(x)(x + 1) + r           (1)

Thay x = -1 vào (1) ta được

( ( - 1 ) 2   +   3 . ( - 1 )   +   2 ) 5   +   ( ( - 1 ) 2   –   4 ( - 1 )   –   4 ) 5 – 1 = Q(x).(-1 + 1) + r

r = 0 5   +   1 5 – 1 ó r = 0

vậy phần dư của phép chia là r = 0. 

đáp án cần chọn là: C