Tìm x:
a//(5x+3)-(x-1)=0
b/(3x-2)-(5x+4)=(x-3)-(x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow2x-1=0\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x^3-x^3-1=x\)
hay x=-1
c: Ta có: \(56x^4+7x=0\)
\(\Leftrightarrow7x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: Ta có: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
b.
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(a,\) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+6\)
\(< =>20x-5x^2+5x^2-12-x-6=0\)
\(< =>19x-18=0\)
\(< =>x=\dfrac{18}{19}\)
\(b,\left(2x-7\right)\left(5+4x\right)-8\left(x^2-4x+5\right)=-30\)
\(< =>10x+8x^2-35-28x-8x^2+24x-40+30=0\)
\(< =>6x-45=0< =>x=\dfrac{45}{6}=7,5\)
a) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+\Rightarrow6\\ \Leftrightarrow20x-5x^2+5x^2-12=x+6\\ \Leftrightarrow20x-12=x+6\\\Rightarrow20x-x=6+12\\ \Rightarrow19x=18\\ \Rightarrow x=\dfrac{18}{19}\)
b) \(\left(2x-7\right)\left(5+4x\right)-8\left(x^2-3x+5\right)=-30\\ \Rightarrow10x+8x^2-35-28x-8x^2+24x-40=-30\\ \Rightarrow6x-75=-30\\ \Rightarrow6x=45\\ \Rightarrow x=\dfrac{15}{2}\)
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a: Ta có: \(40x^4+5x=0\)
\(\Leftrightarrow5x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(8x^2-2x-1=0\)
\(\Leftrightarrow8x^2-4x+2x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
a) ( 5x + 3) - ( x -1 ) = 0
\(\Leftrightarrow\)5x + 3 - x +1 =0
\(\Leftrightarrow\)4x +4 = 0
\(\Leftrightarrow\)4x = -4 \(\Leftrightarrow\)x = \(\frac{-4}{4}\) =-1
b) (3x -2 ) - ( 5x + 4) = ( x - 3) - ( x +5 )
\(\Leftrightarrow\)3x -2 - 5x -4 = x-3 - x -5
\(\Leftrightarrow\)3x - 5x - x + x = -3 -5 +2 +4
\(\Leftrightarrow\)-2x = -2 \(\Leftrightarrow\)x =\(\frac{-2}{-2}\)= 1