tìm STN x biết:1/3+1/6+1/10+...+2/x.(x+1)=2008/2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x(x+1)}=1\frac{2008}{2010}$
$\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x(x+1)}=\frac{2009}{1005}$
$2(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)})=\frac{2009}{1005}$
$2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1})=\frac{2009}{1005}$
$2(1-\frac{1}{x+1})=\frac{2009}{1005}$
$\frac{2x}{x+1}=\frac{2009}{1005}$
$\Rightarrow 2009(x+1)=2010x$
$\Rightarrow x=2009$
\(\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(1-\frac{1}{x+1}\right)\)
\(=2-\frac{2}{x+1}\) mà \(\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=1\frac{2008}{2010}\)
=> \(2-\frac{2}{x+1}=1\frac{2008}{2010}=>\frac{2}{x+1}=\frac{2}{2010}=>x+1=2010=>x=2009\)
đúng cái nhé
`Answer:`
\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)
\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
(*) <=> 1\6 + 1\12 +.. + 1\x.(x+1) = 2009\(2011.2)
ma
1\2.3 =1\2-1\3
1\3.4=1\3-1\4
...............
1\x(x+1)= 1\x-1\(x+1)
cong tung ve ta dc
Vt= 1\2- 1\(x+1) =2009\(2.2011)
<=> 2011\(2.2011) -2009\(2.2011) =1\(x+1)
<=> 1\2011 =1\(x+1)
=> x=2010
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001
nhân 1/2 vào 2 vế ta được vế trái là :
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{2.\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)
\(\frac{x-1}{\left(x+1\right)}=\frac{1999}{2001}\)
suy ra : 2001x - 2001 = 1999x + 1999
2x = 1999 + 2001 = 4000
=> x = 2000
trừ 1 vào mỗi tỉ số,ta đc:
\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}-1=\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}=\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(mà\frac{1}{2011}<\frac{1}{2010}<\frac{1}{2009}<\frac{1}{2008}\Rightarrow\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=>x-2012=0
=>x=2012
vậy x=2012
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2008}{2010}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2008}{2010}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1\frac{2008}{2010}\):2
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{2009}{2010}=\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2010}=\frac{1}{x+1}\)
\(\Rightarrow x=2009\)
nha !
Ta có :A=1+\(\frac{2}{6}\)+\(\frac{2}{12}\)+......+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{4018}{2010}\)
\(\Rightarrow\)A=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{502}{1005}\)
\(\Rightarrow\)\(\frac{1}{x+1}\)=\(\frac{1}{2010}\)\(\Rightarrow\)x+1=2010\(\Rightarrow\)x=2009
`Answer:`
`1/3+1/6+1/10+...+2/(x.(x+1))=2008/2010`
`=2/6+2/12+2/20+...+2/(x.(x+1))=2008/2010`
`=2/(2.3)+2/(3.4)+2/(4.5)+...+(2)/(x.(x+1))=2008/2010`
`=2.(1/2-1/3+1/3-1/4+...+1/x(x+1))=2008/2010`
`=1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=1004/2010`
`=1/2-1/(x+1)=1004/2010`
`=>1/(x+1)=1/2-1004/2010`
`=>1/(x+1)=1/2010`
`=>x+1=2010`
`=>x=2010-1`
`=>x=2009`