Với a,n thuộc N* thì chứng minh:
A) n/a(a+n)=1/a-1/a+n
B) 2n/a(a+n)(a+2n)=1/a(a+n)-1/(a+n)(a+2n)
C) Áp dụng, tính:
C=2014/1.3.5+2014/3.5.7+...+2014/49.51.53
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Bạn quy đồng vế phải ta được vế trái.
B)Bạn tiếp tục quy đồng vế phải ra vế trái.
C)Ta có:
\(\frac{1007}{2}\times\left(\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}...+\frac{4}{49\times51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{49\times51}-\frac{1}{51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{3}-\frac{1}{2703}\right)=\frac{2850}{17}\)
Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.
tham khảo ở đây : Câu hỏi của Vũ Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc
=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc
=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)
=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)
=(ab+ac+b2+bc)(c+a)
=(a+b)(b+c)(c+a)
a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)
\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)
\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )
\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)
Mà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)
Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.
\(\)
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)
\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)
\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)
\(=\frac{n\left(n-1+n+1\right)}{2}\)
\(=\frac{n\times2n}{2}\)
\(=n^2\)
\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương