K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

ko biết đúng hay sai

Theo cosi ab+bc+ac≥3\(\sqrt[3]{a^2b^2c^2}\) nên abc=<1/3

quy đồng thay abc=<1/3 vô

NV
3 tháng 7 2020

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
3 tháng 7 2020

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

28 tháng 7 2019

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

28 tháng 7 2019

èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc

22 tháng 4 2021

bài hơi khoai

22 tháng 4 2021

Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)

\(\Rightarrow2c\ge a+b\)

\(\Rightarrow c\ge\frac{a+b}{2}\)

Từ giả thiết \(\Rightarrow a,b\le1\)

\(\Rightarrow ab\le1\)( *)

Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)

\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)

Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)

Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)

\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)

\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)

Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)

\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)

\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)

\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)

\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)

\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)

\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)

\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)

\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))

\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)

\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)

Mà \(c\ge\frac{a+b}{2}\)

\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)

Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) ) 

\(\Rightarrow\left(1\right)\)đúng

\(\Rightarrow P-S\ge0\)

\(\Rightarrow P\ge S\)

Ta phải chứng minh \(S\ge0\)

\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)

\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2) 

Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)

Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)

\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )

\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)

=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)

\(\Leftrightarrow2x^2-5x+2\ge0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )

\(\Rightarrow S\ge0\)mà \(P\ge S\)

\(\Rightarrow P\ge0\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)

17 tháng 2 2020

https://olm.vn/hoi-dap/detail/239526218296.html

27 tháng 2 2020

Sử dụng phân tích tuyệt vời của Ji Chen:

\(VT-VP=\frac{4\left(a+b+c-2\right)^2+abc+3\Sigma a\left(b+c-1\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)