cho tam giac ABC vuong tai a,phan giac BD.ke DE vuong goc(E thuoc BC).goi F la giao diem cua BA va ED.chung minh rang;
a)AB bang BE
b)tam giac CDF la tam giac can
c)AB //CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
a.Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)
BD - cạnh chung
\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)
\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)
b.Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)
AD = ED ( vi \(\Delta ABD=\Delta EBD\) )
\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF = DC ( 2 cạnh tương ứng)
=> \(\Delta FDC\) cân tại D
c.Ta có:AB = EB (cm a)
=> \(\Delta ABE\) cân tại B
Mà BD là đường phân giác \(\widehat{ABE}\)
=> BD là đường trung trực của \(\Delta ABE\)
=> \(BD\perp AE\) (1)
Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )
=>AF = EC ( 2 cạnh tương ứng)
Mà AB = BE => AB+AF=BE+EC
=> BF = BC. => \(\Delta BFC\) cân tại B
Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)
=> BD là đường trung trực của \(\Delta FBC\)
=> \(BD\perp FC\) (2)
Từ (1),(2) => AE// FC ( dpcm)
Mk chỉ biết lm câu a thuj nka, mk ko học giỏi toán nên có j sai thì xin lỗi bn nka! :)))
a) Xét t.g BAD và t.g BED
Ta có: Góc A = Góc B = 90*( gt )
BD là cạnh chung
B1 = B2 ( BD là tia phân giác của góc B)
=> T.g BAD = T.g BED ( g.c.g )
Vẽ hình ghi dấu vào