Câu 15: Cho tam giác ABC vuông tại A, phân giác BD. Từ D kẻ DH vuông góc với BC.
a. Chứng minh hai tam giác ABD và DBH bằng nhau.
b. Chứng minh AD < DC.
c. Trên tia đối của AB lấy điểm K sao cho KA = HC. Chứng minh tam giác DKC cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H co
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC can tại B
mà BI là trung tuyến
nên BI là phân giác của góc KBC
mà BD là phân giác
nên B,D,I thẳng hàng
a) Xét \(\Delta\)\(\text{ }\text{ABD}\) và \(\text{ΔHBD}\) có
\(\widehat{\text{BAD}}=\widehat{\text{BHD}}=\text{90}^{\text{o}}\)
\(\text{BD}\) là cạnh chung
\(\widehat{\text{ABD}}=\widehat{\text{HBD}}\) (do \(\text{BD}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
Vậy \(\text{ΔABD = ΔHBD}\) (cạnh huyền – góc nhọn)
___________________________________________________
b) Từ \(\text{ΔABD = ΔHBD}\) (câu a) suy ra\(\text{ AD = HD}\) (hai cạnh tương ứng)
Xét \(\text{ΔDHC}\) vuông tại \(\text{H}\) có \(\text{DC}\) là cạnh huyền nên \(\text{DC}\) là cạnh lớn nhất
Do đó \(\text{DC}\)\(>\text{HD}\) nên \(\text{DC}>AD\)
________________________________________________________
c) Xét \(\text{ΔBKC}\) có \(\text{CA ⊥ BK, KH ⊥ BC}\) và \(\text{CA}\) cắt \(\text{KH}\) tại \(\text{D}\)
Do đó \(\text{D}\) là trực tâm của \(\text{BKC}\), nên \(\text{BD ⊥ KC (1)}\)
Gọi \(\text{J}\) là giao điểm của \(\text{BD và KC}\)
Xét \(\text{ΔBKJ}\) và \(\text{ΔBCJ}\) có
\(\widehat{\text{BJK}}=\widehat{BJC}=90^o\)
\(\text{BJ}\) là cạnh chung
\(\widehat{\text{KBJ}}=\widehat{\text{CBJ}}\) (do \(\text{BJ}\) là tia phân giác của \(\widehat{\text{ABD}}\) )
\(\Rightarrow\) \(\text{ΔBKJ = ΔBCJ}\) (cạnh góc vuông – góc nhọn kề)
Suy ra\(\text{ KJ = CJ}\) (hai cạnh tương ứng)
Hay \(\text{J}\) là trung điểm của \(\text{KC}\)
theo bài ra : \(\text{I}\) là trung điểm của \(\text{KC}\) nên \(\text{I}\) và \(\text{J}\) trùng nhau.
Vậy \(\text{B, D, I}\) thẳng hàng
Sửa đề: DH vuông góc với BC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔHBD(cmt)
nên DA=DH(hai cạnh tương ứng)
Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
AK=HC(gt)
Do đó: ΔADK=ΔHDC(hai cạnh góc vuông)
Suy ra: DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔBAD=ΔBHD)
và AK=HC(gt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
TỪ (1) và (2) suy ra BD là đường trung trực của CK
hay BD⊥CK
Xét ΔBKC có
BD là đường cao ứng với cạnh KC(cmt)
CA là đường cao ứng với cạnh BK(gt)
CA cắt BD tại D(gt)
Do đó: D là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)
Suy ra: KD là đường cao ứng với cạnh BC
mà DH là đường cao ứng với cạnh BC(gt)
và KD, DH có điểm chung là D
nên K,D,H thẳng hàng(đpcm)
Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
a) Xét △ABD và △DBH có
DB : cạnh chung
góc ABD = góc DBH ( gt )
⇒ △ABD = △DBH ( ch - gn )
⇒ AD = HD ( 2 cạnh tương ứng )
b) △HDC có : DH < DC ( vì trong △ vuông , cạnh huyền lớn nhất )
mà DH = AD ⇒ AD < DC
thank 💗💗💗💗💗