cho f(x)=1+x^3+x^5+x^7+....+x^101
tính f(1) f(-1)
ai giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:f(x)=1+x3+x5+...+x101
=>f(1)=1+13+15+...+1101
=1+1+...+1(f(x) có 51 số hạng )
=1*51
=1
f(-1) làm tương tự và có kết quả là=-49
Ta có: f(x)=1+x3+x5+...+x101
=> f(1)= 1+13+15+...+1101
= 1+ 1 + 1 +...+1 (f(x) có 51 số hạng)
= 51 f( 1) = 1 + 13 + 15 + ... + 1101 = 1 + 1+ 1+ ... + 1 ( có 51 số hạng 1) = 51
f( -1) = - 49
Cho x=7 ta có:\(y=f\left(7\right)=2f\left(7\right)-f\left(\frac{1}{7}\right)=2.7^2-1=97\)
Vậy \(f\left(7\right)=97\)
Hình như đề sai thì phải bạn ak
cho mk hỏi phân thức \(\frac{x^2-2017}{1+x^{2018}}\) được xác định khi
\(y=f\left(x\right)=\left(2a+3\right)x-5\)
\(f\left(1\right)=\left(2a+3\right).1-5\)
\(\Rightarrow6=2a-2\Rightarrow a=4\)
Vậy a = 4
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
Ta có: f(1) = 1 + 1^3 + 1^5 + 1^7 +...+ 1^101
= 1 + 50.1
= 1 + 50
= 51
Vậy f(1) = 51
Có: f(-1) = 1 + (-1)^3 + (-1)^5 + (-1)^7 + ... + (-1)^101
= 1 + 50.(-1)
= 1 - 50
= -49
Vậy f(-1) = -49
Chúc bạn học tốt nha