giúp mình ạ: tìm GTNN của:
x^2+2y^2+2xy+2y+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(E=2x^2+2x\left(y+3\right)+2y^2+2020\)
\(=2\left(x^2+2.x.\frac{\left(y+3\right)}{2}+\frac{\left(y+3\right)^2}{4}\right)+2y^2+2020-\frac{\left(y+3\right)^2}{2}\)
\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3y^2-6y+4031}{2}\)
\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3\left(y-1\right)^2+4028}{2}\ge\frac{4028}{2}=2014\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\frac{y+3}{2}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy...
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó
\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)
\(=\left(y+x+1\right)^2+x^2-4x+1\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)
=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(x^2+2y^2+2xy+2y+2020\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)+2019\)
\(=\left[\left(x+y\right)^2+\left(y+1\right)^2+2019\right]\ge2019\)
Vì \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\forall x,y\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)