K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó:ΔBAE=ΔBDE

Suy ra: EA=ED

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là phân giác của góc HAC

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

hay \(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của góc HAC

11 tháng 5 2022

undefined

c, Ta có: Góc CAD= góc HAD 

hay góc KAD= góc HAD

Xét △ AHD và △AKD có:

AD chung

Góc AHD= góc AKD= 90 độ

Góc KAD= góc HAD

=> △AHD= △AKD (cạnh huyền- góc nhọn)

=> AH= AK (2 cạnh tương ứng)

Bn lm đc bài này ch?

6 tháng 4 2019

chốt lại một câu 

dễ

6 tháng 4 2019

a, vì BD=BA nên t.giác DBA caab tại B

=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)

=>t.giác EAD cân tại E

=>AE=DE đpcm

b,vì ED và AH cùng vuông góc vs BC nên ED//AH

=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)

=>\(\widehat{DAH}\)=\(\widehat{EAD}\)

=> AD là p/g của góc HAC

c, xét 2 t.giác vuông AKD và AHD có:

                 AD chung

                \(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))

=>t.giác AKD=t.giác AHD(CH-GN)

=>AK=AH

#HỌC TỐT#

           

6 tháng 4 2019

A B C H D E K

10 tháng 3 2017

hình

25 tháng 4 2016

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

25 tháng 4 2016

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)