Tính giá trị biểu thức
\(A=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+\frac{1}{120}+\frac{1}{210}+...+\frac{1}{6840}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)
\(A=\frac{1}{2}\cdot\frac{2}{1\cdot2\cdot3}+\frac{1}{2}\cdot\frac{2}{2\cdot3\cdot4}+\frac{1}{2}\cdot\frac{2}{3\cdot4\cdot5}+...+\frac{1}{2}\cdot\frac{2}{18\cdot19\cdot20}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{18\cdot19\cdot20}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2.3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-0-0-...-0-\frac{1}{380}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(A=\frac{1}{2}\cdot\frac{189}{380}\)
\(A=\frac{189}{760}\)
\(A=1+\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}\)
\(< =>A=1+\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}\)
\(< =>2A=2+\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}\)
\(< =>2A=2+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}\)
\(< =>2A=\frac{5}{2}-\frac{1}{12}=\frac{29}{12}\)
\(< =>A=\frac{29}{12}.\frac{1}{2}=\frac{29}{24}\)
=28/15 x 0,25 x 3 + (8/15 - 79/60) : 47/24
= 28/15 x 0,25 x 3 + (-47/60) : 47/24
Bạn tự tính kết quả theo lần lượt nhé
\(\Rightarrow A=\frac{14}{15}.\frac{20}{21}.\frac{41}{42}.....\frac{209}{210}\)
\(=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}.....\frac{19.22}{20.21}\)
\(=\frac{22}{6}=\frac{11}{3}\)
`Answer:`
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{6}{6}-\frac{1}{6}\right)\left(\frac{10}{10}-\frac{1}{10}\right)\left(\frac{15}{15}-\frac{1}{15}\right)...\left(\frac{210}{210}-\frac{1}{210}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}...\frac{209.2}{210.2}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{418}{420}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{19.22}{20.21}\)
\(=\frac{1.4.2.5.3.6...19.22}{2.3.3.4.4.5...20.21}\)
\(=\frac{\left(1.2.3...19\right)\left(4.5.6...22\right)}{\left(2.3.4...20\right)\left(3.4.5...21\right)}\)
\(=\frac{11}{30}\)
đặt 1/6 chung rồi giải