K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt x2 = t > 0 ta được

\(2t+1=\dfrac{1}{t}-4\Leftrightarrow2t^2+5t-1=0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\\t=\dfrac{-5-\sqrt{33}}{4}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\) 

Vậy pt có 2 nghiệm

7 tháng 2 2022

\(2x^2+1=\dfrac{1}{x^2}-4\left(1\right)\)

Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó phương trình \(\left(1\right)\) trở thành \(2t+1=\dfrac{1}{t}-4\)

\(\Leftrightarrow2t^2+5t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\left(\text{nhận}\right)\\t=\dfrac{-5-\sqrt{33}}{4}\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{-\sqrt{-5+\sqrt{33}}}{2};\dfrac{\sqrt{-5+\sqrt{33}}}{2}\right\}\)

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

sao câu 1 hoài v ạ.Còn câu 2,3 nữa á.

1 tháng 12 2021

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

11 tháng 1 2022

\(\dfrac{2x+1}{3x+2}=\dfrac{x-1}{x-2}\) (đk: x≠ 2; \(-\dfrac{2}{3}\) )

⇔ \(\left(x-2\right)\left(2x+1\right)=\left(x-1\right)\left(3x+2\right)\)

⇔ \(2x^2+x-4x-2=3x^2+2x-3x-2\)

⇔ \(3x^2-x-2-2x^2+3x+2=0\)

⇔ \(x^2+2x=0\)

⇔ \(x\left(x+2\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-2\right\}\)

\(\Leftrightarrow3x^2-3x+2x-2=2x^2-4x+x-2\)

\(\Leftrightarrow x^2+2x=0\)

=>x(x+2)=0

=>x=0 hoặc x=-2

24 tháng 10 2021

\(\Rightarrow2-4x=6-3x\\ \Rightarrow x=-4\)

24 tháng 10 2021

\(\dfrac{2x-1}{3}=\dfrac{2-x}{-2}\)

\(\Rightarrow-2\left(2x-1\right)=3\left(2-x\right)\)

\(\Rightarrow-4x+2=6-3x\Rightarrow x=-4\)

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}