bài nào cx đc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(45.\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
\(=a^2-ab+b^2+3ab-6a^2b^2+6a^2b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=1^2\)
\(=1\).
42:
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=0
=>a^3+b^3+c^3=3abc
44:
a: x^3+y^3+3xy
=(x+y)^3-3xy(x+y)+3xy
=1^3-3xy+3xy=1
b: x^3-y^3-3xy
=(x-y)^3+3xy(x-y)-3xy
=1^3+3xy-3xy=1
mn giúp mik vs ạ bài nào cx đc ạ cả 2 thì càng tốt mik cảm ơn vì bài hơi dài nên mon mn thông cảm :)
Câu 106:
a: Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BC
hay PN//HM; QN//HM
Xét tứ giác QNMH có QN//HM
nên QNMH là hình thang
mà \(\widehat{QHM}=90^0\)
nên QNMH là hình thang vuông
b: Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của BC
P là trung điểm của AB
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
bạn đinhr thực sự hâm mộ bạn luôn á cam rơn nhìu nha mong bn sẽ luôn giúp đỡ mik :)
Bài 1:
b: Ta có: \(18^n:2^n=\left(\sqrt{81}\right)^2\)
\(\Leftrightarrow9^n=81\)
hay n=2
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
d: \(AH^2-AN^2=HN^2\)
\(BH^2-BM^2=MH^2\)
mà HN=MH
nên \(AH^2-AN^2=BH^2-BM^2\)
hay \(AH^2+BM^2=BH^2+AN^2\)
Bài 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{3}{b}=\dfrac{1}{2}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{10}\\\dfrac{1}{b}=\dfrac{1}{6}-\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=15\end{matrix}\right.\)
1.\(\Leftrightarrow\left\{{}\begin{matrix}4x+8y=28\\4x-5y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=28-8y\\28-8y-5y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=28-8y\\13y=26\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=28-16\\y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)